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ABSTRACT 

 
 

The results of theoretical research on Free Electron Lasers (FELs) are presented.  

Basic FEL physics is reviewed, using a previously developed classical theory.  Numerical 

simulations based on this theory are described, and numerous examples show how they 

have been used to increase understanding of existing FELs and to help plan new 

experiments.  Single-mode simulations that follow the evolution of a single-frequency 

plane wave provide insight into important physical effects in FELs.  Results show how 

these simulations are used to evaluate new FEL designs such as inverse-tapered and step-

tapered undulators.  Longitudinal multimode simulations model plane waves using finite-

length electron and optical pulses.  These simulations are used to study coherence 

evolution in various FEL designs, and to explain effects such as limit-cycle behavior.  

Transverse multimode simulations that allow for the finite transverse dimensions of the 

optical wavefronts include the effects of optical mode distortion.  These simulations are 

currently being used to design short Rayleigh length optical cavities that are less sensitive 

to mirror damage.  Four-dimensional simulations are also described, which follow the 

optical wavefront in x, y, z, and t, including the effects of multiple longitudinal and 

transverse modes.  These simulations are computationally intensive, but may play an 

important role in the design of future high-power FELs.  
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LIST OF SYMBOLS 

 
Throughout this dissertation, cgs units are used, except for the dimensionless 

variables mentioned below, which are defined in the text. 

 

A
G

 magnetic vector potential 

aG  dimensionless optical field 

B
G

 undulator magnetic field 

sB
JJG

 optical magnetic field 

β
G

 dimensionless relativistic electron velocity 

c speed of light in vacuum 

d dimensionless value of desynchronism 

D dimensionless optical klystron dispersive strength 

δ dimensionless phase acceleration due to linear undulator taper  

∆ dimensionless phase acceleration due to undulator step-taper 

e electron charge 

E optical field amplitude 

sE
JJG

 electric field of optical wave 

ε electron beam emittance 

F dimensionless filling factor 

F(τ) characteristic function of electron distribution 

f(ν) electron phase velocity distribution 

φ phase of optical wave 
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G optical field single-pass gain 

γ Lorentz factor 

η single-pass extraction efficiency 

J current density 

j dimensionless current density 

k optical wavenumber 

0k  undulator wavenumber 

L undulator length 

le optical pulse length 

λ optical wavelength 

0λ  undulator wavelength 

m electron mass 

N number of undulator periods 

n number of passes through the undulator 

ν dimensionless electron phase velocity 

sν  dimensionless synchrotron frequency 

P dimensionless optical power 

Q resonator quality factor 

q electron phase velocity shift from resonance 

re electron beam radius 

rm dimensionless mirror radius 

rc dimensionless radius of curvature 

ρ electron density 

 x 



S resonator cavity length 

Gσ  electron phase velocity spread due to Gaussian energy spread 

θσ  electron phase velocity spread due to angular spread 

zσ  dimensionless electron pulse length 

t time 

τ dimensionless time 

wτ  dimensionless position of optical waist 

0W  characteristic optical mode radius 

0w  dimensionless optical waist radius 

ω optical angular frequency 

0ω  undulator angular frequency 

βω  dimensionless betatron frequency 

0Z  Rayleigh length 

0z  dimensionless Rayleigh length 

ζ dimensionless electron phase 
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EXECUTIVE SUMMARY 
 

The free electron laser (FEL) is of interest to the Navy as a scientific tool and a 

shipboard weapon system to destroy sea-skimming missiles.  The FEL uses a relativistic 

electron beam, which passes through a magnetic undulator inside an optical cavity.  The 

electron beam must be high-energy to produce short optical wavelengths.  The magnetic 

undulator, which consists of spatially alternating magnetic fields, causes the relativistic 

electrons to “wiggle” and thus radiate and amplify co-propagating light.  The optical 

cavity stores some of the light, allowing it to develop a narrow spectrum through mode 

competition over many passes. 

The key advantages of FELs over existing light sources are tunability, high 

power, and high efficiency.  While the wavelengths of conventional lasers are constrained 

by the allowed energy transitions of electrons bound in atoms, the wavelength of an FEL 

can be tuned over a broad range, from microwaves to X-rays, since the electrons are 

“free” to make energy transitions over a continuum of states.  An FEL can amplify large 

optical power without damage, since there is no heat-absorbing medium within the 

optical cavity.  FELs can be highly efficient: up to 40% extraction efficiency from the 

electron beam has been demonstrated, and up to 10% wall-plug efficiency may be 

possible. 

The first part of the dissertation explains the classical theory of FELs.  The 

resonance condition relates the optical wavelength to the electron beam energy and 

properties of the magnetic undulator.  The FEL pendulum equation describes the 

evolution of the electrons with respect to the optical and undulator fields.  Phase-space 

plots are used to show how electrons bunch on the scale of an optical wavelength, 

enabling power exchange between the electrons and the optical field.  The FEL wave 

equation describes the evolution of the optical field due to electron bunching.  Examples 

show how the electron beam quality (energy spread and emittance) affect bunching and 

FEL gain.  As strong optical fields develop, the electrons begin to undergo synchrotron 

oscillations in phase space, leading to saturation of the optical power.  Tapering the 

magnetic field along the undulator length can extend the saturation limit. 

 xiii 



The following chapters describe the results from a set of numerical FEL 

simulations based on this classical theory.  All of the simulations use the pendulum 

equation to follow the electron evolution, and the wave equation to follow the optical 

field evolution.  These simulations are described in order of increasing complexity.  The 

simplest ones, single-mode simulations, model the interaction of a single-frequency plane 

wave with the relativistic electron beam as it travels through the undulator.  These 

simulations provide insight into important physical effects in FELs, and are used to 

evaluate new FEL designs such as inverse-tapered and step-tapered undulators. 

Longitudinal multimode simulations use finite-length electron and optical pulses 

to model plane waves of multiple frequencies inside the resonator.  The slightly slower-

moving electron pulse slips back relative to the optical pulse, reducing the overlap and 

the optical power gain.  These simulations are used to study coherence evolution in 

various FEL designs, and to explain effects such as limit-cycle behavior. 

Transverse multimode simulations allow for the finite transverse dimensions of 

the optical wavefronts.  The parabolic wave equation is used to include the effects of 

optical diffraction.  Diffraction generally reduces the overlap between the optical 

wavefront and the electron beam, but under special conditions the FEL mechanism can 

continuously distort the optical wave, improving the overlap and enhancing the gain.  

These simulations are useful in studying new optical cavity designs. 

Four-dimensional simulations follow the evolution of the electrons and the optical 

wavefront in x, y, z, and t, modeling multiple longitudinal and transverse modes.  In 

general, both longitudinal and transverse modes are present and interact with each other.  

These simulations include the effects of longitudinal pulse slippage and transverse mode 

distortion.  However, they are computationally intensive, requiring large amounts of 

memory and computer time.  Four-dimensional simulations may play an important role in 

the design of future high-power FELs, which require short Rayleigh-length optical 

cavities that are less sensitive to mirror damage. 
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I. INTRODUCTION 

This dissertation presents the results of Free Electron Laser (FEL) research over 

the past 10 years at the Naval Postgraduate School (NPS).  The author has been deeply 

involved in all of this work, making significant contributions as the co-author of 10 

articles published in refereed journals, and as the lead author of 7 of those articles. 

An FEL is a new type of laser, which uses a relativistic electron beam to create 

and amplify coherent radiation.  In a conventional laser, the electrons in the lasing 

medium are bound in atoms, and a particular transition between fixed atomic energy 

levels determines the radiation wavelength.  In an FEL, the electrons are “free” to make 

an energy transition over a continuum of states, producing radiation over a broad range of 

wavelengths from microwaves to X-rays, depending on the design parameters.  Since 

there is no heat-absorbing medium inside the optical cavity, an FEL can process large 

amounts of optical power without damage.  At NPS, we do theoretical research and 

numerical modeling of FELs, helping to design new FELs at many universities and 

laboratories around the world, and to improve understanding of existing experiments.   

Chapter II of this dissertation reviews the basic physics of FELs using a 

previously developed theory [1], explaining the FEL interaction in terms of the classical 

pendulum equation and Maxwell’s wave equation.  The equations are expressed using 

dimensionless parameters, which give insight into the FEL mechanism, and facilitate 

numerical modeling.  We have used this theory to develop simulations of FELs on 

desktop computers.  These simulations have been benchmarked against theoretical 

formulas and by comparison to numerous experiments.  They have also provided the 

basis for FEL simulations used by other researchers. 

The chapters that follow present the various types of simulations we have 

developed: single-mode, longitudinal multimode, transverse multimode, and four-

dimensional simulations.  The basic structure of the simulations is described, including 

their assumptions and limitations, the input parameters, and the output they produce.  

Examples are shown of how we have used these simulations at NPS to model FEL 

experiments, to study important physical effects, and to extend the basic theory to new 
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FEL concepts.  Current NPS research is highlighted, including our ongoing collaboration 

with the Thomas Jefferson National Accelerator Facility (TJNAF) to develop a high-

power FEL for naval applications. 

Chapter III describes our single-mode simulations, which model a single-

frequency plane wave interacting with many electrons in the relativistic electron beam.  

We have used these simulations to study the effects of electron beam quality on FEL 

gain, and to understand basic physical effects in new FEL designs.  This research helped 

to design the SELENE FEL, a ground-based laser proposed in the early 1990’s for 

beaming power to satellites.  In recent years we have used single-mode simulations to 

study new designs for the current and proposed FELs at TJNAF, resulting in several 

conference presentations and a published article. 

Chapter IV describes our longitudinal multimode simulations, which model plane 

waves using finite-length electron and optical pulses.  These simulations have helped to 

understand new effects such as limit-cycle behavior in short pulse FELs.  We used these 

simulations in the early 1990’s to model electron beam energy modulation in the SCA 

FEL at Stanford.  Our longitudinal multimode simulations contributed to the design of a 

high-power FEL proposed at Boeing in the mid-1990’s, predicting the development of a 

chaotic optical spectrum.  More recently we have used these simulations to study mode 

competition and coherence evolution in the proposed X-ray FEL at SLAC.  They 

continue to play an important role in our FEL design studies for TJNAF.  The results of 

this work have been presented at several conferences and in three published articles. 

Chapter V describes our transverse multimode simulations, which allow for 

optical wavefronts of finite transverse dimensions.  We have used these simulations to 

study optical mode distortion in the SELENE and Boeing FELs, and they have 

contributed to the design of new optical cavities for the TJNAF FEL.  These research 

results have been presented at several conferences and in two published articles. 

Chapter VI describes our four-dimensional simulations, which model the electron 

beam and the optical wavefront in x, y, z, and t, including the effects of multiple 

longitudinal and transverse modes.  These simulations are computationally intensive, 

requiring large amounts of memory and computer time.  In the early and mid-1990’s we 
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developed versions of these simulations that could run on desktop workstations, but 

applied only to FELs with narrow electron beams.  We used these simulations to study 

coherence evolution and optical mode distortion effects in the Boeing FEL, and to help 

design an infrared FEL at TJNAF.  We presented results of this research at several 

conferences, and in three published articles.  We are currently studying new numerical 

techniques to reduce the computational requirements for our four-dimensional 

simulations, which may be useful in the design of high-power FELs for ship defense. 

AUTHOR CONTRIBUTIONS 

The author has made significant contributions to all of the work described here: 

• Planned and participated in FEL research projects; 

• Developed numerical simulations of FELs, and interpreted their results; 

• Used the simulations to help design new FELs, and to understand 
important physical effects in existing experiments; 

• Extended the basic FEL theory and modified simulations to include new 
FEL concepts and designs; 

• Lead author for 7 articles published in refereed journals; 

• Co-author for 3 additional articles published in refereed journals; 

• Co-author for 7 published conference contributions; 

• Gave more than a dozen oral and poster presentations at FEL conferences; 

• Taught classes on FEL theory and simulation techniques; 

• Assisted with more that two dozen NPS student theses; 

• Represented the NPS FEL group at two TJNAF FEL Upgrade Reviews, 
and presented the results of our research at those meetings; 

• Helped to write an FEL research proposal for JTO, which was recently 
funded at NPS for $750,000 over the next 3 years. 
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II. BASIC FEL THEORY 

A Free Electron Laser (FEL) is a device used to create powerful, tunable, 

coherent radiation for scientific, medical, industrial and military applications.  Figure 1 

shows a schematic of an FEL oscillator, which was first described by John Madey in the 

early 1970’s [2]. 

 

 
Figure 1.   FEL Oscillator 

The major components are a relativistic electron beam, a magnetic undulator, and a 

resonator cavity.  A linear accelerator or a storage ring provides the relativistic electron 

beam, with typical energy of 100 MeV and peak current of 100 A.  The undulator is 

either a series of alternating permanent magnets or a helically wound electromagnet, with 

typically 50 periods, each a few centimeters long.  The undulator field strength is on the 

order of a few kilogauss.  The resonator consists of an evacuated optical cavity typically 

about 10 meters long, terminated by mirrors on each end.  One of the mirrors is partially 

transmitting to outcouple the light for applications.  The electron beam, after passing 

once through the undulator, can either be directed to a beam dump, or recirculated back 

to the accelerator to enhance overall efficiency and reduce the energy of the dumped 

beam. 

In an FEL amplifier, there are no mirrors.  Radiation from an external source is 

amplified over a single pass.  It is also possible to create and amplify light over a single 

pass, with no external source, in a process known as self-amplification of spontaneous 

emission (SASE). 
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The magnetic undulator gives the relativistic electrons a slight “wiggling” motion 

from side to side, yielding spontaneous radiation in a narrow cone in the forward 

direction.  The radiation wavelength is determined by the electron beam energy, the 

undulator wavelength, and the magnetic field strength.  The transverse motion of the 

electrons, when properly coupled to the transverse electric field of the radiation, produces 

stimulated emission, amplifying the light as it passes through the undulator. 

FELs offer significant advantages over existing radiation sources.  Unlike a 

conventional laser, the available wavelengths are not restricted by allowed transitions 

between energy levels of bound electrons.  An FEL can be designed to operate at any 

wavelength from microwaves to X-rays, and a particular FEL can also be tunable over a 

broad band.  A wavelength range of x10 for a single FEL has been demonstrated [3], and 

a range of x100 may be possible.  Unlike a synchrotron light source, FEL radiation is 

highly coherent.  Since there are no atoms or molecules inside the optical cavity, only 

relativistic free electrons, exhaust “heat” is removed at the speed of light, so it is possible 

to process megawatts of optical power inside the cavity.  An FEL can be highly efficient; 

up to 40% energy extraction from the electron beam has been demonstrated [4].  FELs 

can also produce very short (picosecond) optical pulses, which are useful for many 

applications. 

The first FEL was built at Stanford in the mid 1970’s [5].  Since then, hundreds 

have been constructed around the world, with wavelengths ranging from 0.1 µm to 

several hundred µm [6].  The most powerful FEL is at Jefferson Labs in Virginia [7]; it 

has produced 2 kW of average power at 3 µm, and will soon be upgraded to 10 kW [8].  

There are proposals to build X-ray FELs, with wavelengths from 1 to 10 , at DESY 

(Germany) and SLAC (Stanford); these would be the world’s first X-ray lasers, with 

many novel applications [9]. 

A. RESONANCE CONDITION 

The primary factor that determines the operating wavelength of an FEL is the 

electron beam energy , where γ  is the Lorentz factor,  is the 

electron velocity, m is the electron rest mass, and c is the speed of light.  In the reference 

2mcγ ( ) 1/ 221 β
−

= −
G

v β=
GG c
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frame of the electron, the undulator wavelength λ  is Lorentz contracted to λ λ , 

and the electron will oscillate and emit light at that same wavelength, .  In the 

laboratory frame, the light is Doppler shifted to the wavelength 

0 0 0 /γ′ =

0λ′ ′λ =

2λ λ′= γ , which gives 

e E⋅
JG

0 c t+ = ∆

0

 0
22

λ
λ

γ
≈ . (1) 

This equation is approximate because it neglects the transverse motion of the electron (it 

assumes the undulator field is very small), but it shows the relationship between electron 

energy and optical wavelength.  Thus, to achieve very short wavelengths, such as the 

proposed X-ray FEL at SLAC, requires a high-energy electron beam (>10 GeV, so that 

), whereas infrared radiation can be produced with a more modest accelerator 

( 5 MeV, γ ).  Visible and ultraviolet FELs require beam energies on the order of 

500 MeV (γ ). 

20000γ >

0∼ 100∼

1000∼

A more precise relationship can be derived by considering a single electron 

traveling at speed along the undulator (z) axis, with , and a co-propagating 

photon traveling at speed c.  The undulator gives transverse motion to the electron, 

enabling energy exchange through the relativistic Lorentz equation, 

zcβ 1zβ ≈

 d
dt mc
γ

β= −
JG

 (2) 

where e e=  is the electron charge magnitude and  is the electric field of the light 

wave.  Since the light wave is transverse,  and only the transverse components of 

the velocity, , contribute to energy exchange in (2). For optimum energy 

exchange, these components should oscillate at the same frequency as .  This leads to 

the following resonance condition: one wavelength of light passes over an electron as the 

electron travels through one undulator period.  In the corresponding time interval ∆t, the 

electron travels a distance  and the photon travels a distance λ λ .  

Thus, 

E
JG

0zE =

,x yβ β⊥ =

E
JG

t0 zcλ β= ∆

 1 z

z

β
λ

β
 −

= 
 

λ . (3) 
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If we assume a highly relativistic electron beam (  and ignore the transverse 

motion of the electron ( , then , and the resonance condition (3) 

reduces to the previous result (1). 

)

)

0

1γ �

γ1β⊥ �
21 1/ 2zβ ≈ −

B. ELECTRON DYNAMICS 

1. Betatron Motion 

To understand the processes of spontaneous and stimulated emission in an FEL, it 

is necessary to study the motion of the electrons in the undulator.  First, we will derive 

the electron trajectories in a linearly polarized undulator with no light present.  The 

magnetic field for an ideal linear undulator can be written in rectangular coordinates [10] 
  (4) ( ) ( ) ( ) ( )( )0 0 00, sin cosh , cos sinhLB B k z k y k z k y=

JJG

where 0 2k π λ= 0  is the undulator wavenumber, and  is the undulator period.  Along 

the undulator (z) axis, the field is given by  with an rms value 

0λ

) ˆz y( 0sinB k rms 2B B= .  

Typically k y , since λ 5 cm and the beam radius 0 1� 0 ∼ y ∼ 1 mm.  Off axis, the average 

field ( 2 2
0k y )rms 1B B= + +"  increases with y, focusing the electrons back towards the 

axis.  Since the field (4) is independent of x, there is no natural focusing in the x 

direction.  In practice, the beam may be focused using parabolic pole faces or a 

quadrupole lens. 

The electron motion is determined by the relativistic Lorentz force equations, 

 
( ) (

d e E
dt mc

γ β
β= − + ×

JG
JG JG JG )B

G

 (5) 

plus the energy equation (2).   Using  (4) for the undulator field and assuming no light 

present , we obtain ( )0 , 0E γ= =�
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( ) ( ) ( ) ( )

( ) ( )

( ) ( )

0 0 02

0 02

0 02

cos sinh sin cosh

cos sinh

sin cosh

x

y

z

eB k z y k y z k z k y
mc
eB x k z k y
mc
eB x k z k y
mc

β
γ

β
γ

β
γ

= − −  

= +

= −

� � �

� �

� �

0

 (6) 

The first equation is easily integrated: 

 ( ) (02 cos coshx
K k z k yβ
γ

= − )0  (7) 

where 2
rms 0 2K eB mcλ π=  is the “undulator parameter”, a dimensionless quantity 

approximately equal to 1 for most FELs.  We have assumed perfect injection in the x 

direction, so the integration constant in (7) is zero.  Now substitute (7) into the last two 

equations in (6) to get 

 
( ) ( )

( ) ( )

2
20

0 02

2
20

0 02

cos sinh 2

sin 2 cosh .

y

z

cK k k z k y

cK k k z k y

β
γ

β
γ

= −

=

�

�
 (8) 

Averaging over many undulator periods and assuming the electron is near the undulator 

axis  gives ( 0 1k y� ) ( )2 2 2
0y cK k yβ γ≈ −�  and 0zβ ≈� .  Thus the averaged equation of 

motion for y is 

 
22

0
2

Kk Ld y y
dτ γ

 
= − 

 
 (9) 

where we have used the dimensionless time ct Lτ = .  This corresponds to simple 

harmonic motion at the dimensionless betatron frequency, 0 2Kk L NKβ π≡ =ω γ .  For 

typical FEL parameters,ω , so there is one betatron oscillation along the undulator.   

γ

π2β ≈

The general solution to the harmonic oscillator equation (9) can be written 

 ( ) (0( ) cos sinyL
y y β

β

θ
τ ω τ

ω
= + )βω τ  (10) 
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where and θ are the initial position and angle of an electron at the undulator entrance 

, with respect to the undulator axis.  The initial angle is related to the initial y- 

velocity by 

0y

0)

y

(τ =

( )0yDy Lθ =  where (  indicates a derivative with respect to dimensionless 

time τ.  Equation (10) describes the electron betatron motion in a linearly polarized 

undulator with no light present. 

)
D

For a helical undulator, the magnetic field can be written in cylindrical 

coordinates using Bessel functions [1].   Near the undulator axis, the average transverse 

field can be expanded for  to get 0 1k r � ( 2 2
01 4B B k r⊥ = + +") , which increases off 

axis at half the rate of the linear field, so the betatron frequency is reduced by a factor of 

2 .  Since the field is axially symmetric, there is equal betatron focusing in both the x 

and y directions. 

2. FEL Pendulum Equation 

Now we consider how a co-propagating optical wave affects the electron 

dynamics.  For a helical undulator, assuming that betatron focusing keeps the electrons 

near the undulator axis, the field can be simplified in rectangular coordinates to 

 . (11) ( 0 0cos ,sin ,0HB B k z k z=
JJJG

)

B

)

φ

Note that unlike the linear case, the field amplitude is constant along the z-axis, so 

in the definition of the undulator parameter K. rmsB =

Now introduce a helically polarized, monochromatic plane wave with 

wavenumber k and frequency ω, traveling in the +z direction, with optical fields given by 

  (12) ( ) (cos , sin , 0 , sin , cos , 0s sE E B Eψ ψ ψ ψ= − =
JJG JJG

where ψ , E is the optical field amplitude in cgs unit, and φ is the optical 

phase.  Integrating (5) using the undulator field (11) and the optical field (12), with the 

assumption γ , gives the electron trajectories, 

kz tω= − +

1�

 ( )
2

0 0 2

1cos , sin , 0 , 1
2z

K k z k zβ
γ γ⊥

+
= − = −

JJG K
β . (13) 
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We again assume perfect injection of the electrons into the undulator, so the constants of 

integration are zero.  Imperfections in the electron beam will be discussed later.  Note 

that the amplitude of the transverse oscillations is small since 1K γ � , but as we will 

see in the next section, it is these oscillations that cause spontaneous emission, and couple 

the electron motion to the optical wave to enable stimulated emission. 

Using the expression (13) for , the resonance condition (3) can now be written zβ

 ( 20
2 1

2
Kλ

λ
γ

= + ) . (14) 

Substituting  from (13) into the energy equation (2) gives β⊥

G

 (cosd eKE
dt mc
γ

γ
γ

= = +� )ζ φ

ω

)

 (15) 

where  is the electron phase with respect to the combined optical and 

undulator fields.  Equation (15) contains the physics of energy exchange: if the electron 

phases ζ are uniformly distributed, then half the electrons will gain energy  and 

half the electrons will lose energy ( .  In order to have a net energy transfer, the 

electrons must be bunched on the scale of the optical wavelength. 

0( )k k z tζ = + −

( 0)γ >�

0γ <�

The electron phase velocity is given by ( )0 zd dt k k cζ β= + −

zβ

ω .  Taking another 

time derivative, assuming γ  and using (13) for  gives 1�

 
2 2

2 2

1d Kkc
dt

ζ
γ γ

  +
=   

  

�γ . (16) 

Substituting γ  from (15) and using the resonance condition (14), �

 (
2

2 2

2 cosoeKEkd
dt m

ζ
ζ φ

γ
= )+ . (17) 

Assuming the electron energy γ  doesn’t change much over an undulator period, we 

can simplify this equation to obtain 

2mc

 (
2

2 cosd a
d

ζ
ν

τ
= = +

D )ζ φ  (18) 
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where  is the dimensionless electron phase velocity, and ( )0 zL k k kν ζ β= = + −
D



2 24 /a NeKLE mcπ γ=  is the dimensionless optical field amplitude.  The variable ν  is 

also known as the “resonance parameter”, since ν =  for an electron that satisfies the 

resonance condition. 

0

The result (18) also holds for a linear undulator if we replace K in the definition of 

a

ξ =

 by , where  are Bessel functions of the first kind, and 

. [1] 

( ) ( )( )0 1K J Jξ ξ−

( )2 2/ 2 1K K+

0  and J 1J

Equation (18) is known as the FEL pendulum equation.  It describes the 

microscopic motion of each electron along the z-axis in a reference frame one optical 

wavelength long, traveling at the speed of a resonant electron.  In that reference frame, 

the electron motion is analogous to a classical pendulum. [11] 

To visualize this motion, it is useful to look at a phase space plot such as Figure 2 

below, which shows the electron evolution in ζ and  for a typical low-gain FEL.  

This figure was produced by numerically solving the pendulum equation (18) in a single-

mode simulation, as described in a later chapter.  Twenty sample electrons are injected at 

resonance, each with initial phase velocity ν ν , and their initial phases ζ  

evenly distributed.  A color scale is used to show their evolution from the beginning of 

the undulator (τ = , yellow), to the end of the undulator (τ = , red).  The electrons are 

seen to follow pendulum phase space orbits.  The separatrix, drawn in red for reference, 

is defined by 

ν ζ=
D

( )0 0=0 = i

0 1

(2 1 sins a ζ= + + )s φ 
2ν .  The separatrix passes through the unstable fixed 

points at ( ) ( ), 2,0πζ ν = −  and ( , with peak-to-peak height )3 2π ,0 1/ 2a4 .  Inside the 

separatrix, the electrons follow closed paths around the stable fixed point at 

( ) (π )2,0,ζ ν = , corresponding to a pendulum swinging back and forth; outside the 

separatrix are open paths, corresponding to a pendulum swinging “over the top”.  Notice 

at the end of the undulator the electrons are bunched near 2ζ π . =
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Figure 2.   Electron evolution in  phase space, optical field gain G  

and phase 
( ,ζ ν ) ( )τ

( )φ τ

)

γ

 for a single pass through a typical low-gain FEL, 

with electrons injected at resonance .  The electrons follow 

pendulum phase space orbits, and there is no net gain ( ) . 
( 0 0ν =

0G ≈

A change in phase velocity ∆ν can be related to an energy change ∆γ using the 

definition of ν  after (18), the definition of  (13), and the resonance condition (14), to 

obtain .  Thus the electrons gain energy when they move up on the 

phase space plot, and lose energy when they move down.  In Figure 2, half of the 

electrons gain energy and half lose energy.  The net result is very little energy transfer, as 

shown by the gain evolution plot G  in the upper-right.  The gain is defined by 

zβ

4ν π

( )

/N γ∆ = ∆

( )τ

( ) 0 0G P Pτ τ  P= − , where  is the optical power at time τ , and  is 

the initial optical power.  The lower-right plot shows the optical phase evolution 

(P τ ) ( )0 0P P=

( )φ τ , 

which causes the separatrix to shift slightly. 

Figure 3 shows another simulation with the electrons injected slightly off 

resonance at ν ≈ .   Some electrons now follow open orbits above the separatrix; 

those on the left side of the plot move ahead faster, while those on the right move slower.  

0 2.6
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The net effect is bunching near ζ , where the electrons “fall” towards smaller values 

of ν, losing energy to the optical wave.  Thus the final gain increases to about 13%, 

whereas in the previous case it was only about 0.5%.  Also note that the optical phase 

shift has decreased. 

π=

0

 

 

Figure 3.   Electron evolution in  phase space, optical field gain G  

and phase 
( ,ζ ν ) ( )τ

)
( )φ τ

0)

π

 for a single pass through a typical low-gain FEL, 

with electrons injected slightly off resonance ( .  The 
electrons still follow pendulum phase space paths, but now there is 
significant energy extraction and gain of about 13%. 

0 2.6ν =

If the electrons are started farther off resonance (larger ν ), the phase space orbits 

flatten out and there is less gain.  If the electrons start with a negative phase velocity 

, they bunch near ζ =  and absorb energy from the optical field.  Figure 4 

shows the gain in a single pass through the undulator, plotted versus initial electron phase 

velocity ν , generated by repeating a single-mode simulation while varying ν .  The gain 

curve in Figure 4 is antisymmetric, and the peak gain is about 13% at ν ≈ .  The gain 

bandwidth is .  Extracting energy in excess of the gain bandwidth, 

0

0(ν <

0 0

2.60

2ν∆ ≈
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4 Nν π γ γ∆ = ∆ ≈ 2π , reduces the gain, so the maximum theoretical efficiency of an 

FEL (single pass energy extraction) is 1 2Nγ γ∆ ≈ . 

 

 
Figure 4.   Single-pass gain versus initial electron phase velocity for a low-

gain FEL with weak optical fields.  The gain curve is anti-
symmetric, with peak gain of about 13% at ν ≈ . 0 2.6

Our derivation of the pendulum equation (18) assumed perfect injection of the 

electron beam into the undulator.  If an electron is injected off-axis, at a displacement  

or an angle θ , it will undergo betatron motion described in (10).  With the assumptions 

and , it can be shown [12] that the corresponding phase velocity is 

reduced by 

0y

y

k yyθ �π 0 0 1�

 ( 2 2 2 2 2
0 02

2
1 y

N K k y
Kβ

π
ν∆ = − +

+
)γ θ . (19) 

Note that this shift is constant in time, so with an adjustment to the initial phase velocity, 

we can still use the pendulum equation to determine the electron’s phase space evolution. 

In a realistic beam, the electrons enter the undulator with a random distribution of 

positions and angles characterized by rms spreads 0y  and yθ .  Each of those can be 

changed using focusing fields, but their product, known as the emittance 0y yy=ε , is 

fixed [1].  Experimentalists try to “match” these quantities so that the beam is not too 

large and does not expand too much along the undulator.  When the matching condition 

θ

0 0 yKk y γθ≈ is satisfied, the phase velocity spread 2 yNKkβν π ε∆ ≈

2ν π

γ  is minimized.  

Figure 4 shows that the natural gain bandwidth of an FEL is ∆ ≈ , so for optimum 
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gain the emittance should be limited to max 2y NKλ π≈ε γ , which corresponds to about 1 

mm-mrad for typical FEL parameters.  For a short wavelength FEL, or one with many 

undulator periods N, the required emittance can be significantly less. 

C. OPTICAL FIELD EVOLUTION 

1. Spontaneous Emission 

The small transverse oscillations (13) of the relativistic electrons cause them to 

radiate light into a forward cone of angular width on the order of γ  [13].  If , the 

radiation cone stays in a detector on axis at infinity, but if  the cone periodically 

deflects out of the detector, producing higher frequency harmonics [14]. This 

spontaneous emission is required for start-up of an FEL oscillator or SASE FEL.  

According to the FEL resonance condition (14), the fundamental frequency is 

1−

1

1K

K

( )2
02 1k c Kω γ= +

K

2

)

.  The total radiated power at each frequency can be found from the 

relativistic Larmor formula, which reduces to a simple result that for each pass through a 

typical undulator ( , only a small fraction of the electrons in the beam, α , 

contributes a photon to the fundamental mode, where α  is the fine structure constant [1]. 

1≈ 2 2−10K ≈

2. Stimulated Emission 

Now we consider how the optical wave and electrons evolve as they interact in 

the undulator.  First, we derive a simple formula for the gain in weak optical fields, 

a π�

0a a≈

.  We assume a perfect electron beam, with all the electrons at the same initial 

phase velocity ν  and their initial phases ζ  evenly distributed.  If we assume low gain, 

, then we can expand ζ and ν in powers of the initial field amplitude : 

0 0

0a

  (20) 
(0) (1) (2)

(0) (1) (2) .
ζ ζ ζ ζ

ν ν ν ν

= + + +

= + + +

"
"

To zeroth order in  (no optical field), ζ ζ .  To first 

order in , 

0a (0) (0)
0 0 andν τ ν= + = 0ν

0a
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[ ]

[ ]

(1) 0
0 0 0 0 02

0

(1) 0
0 0 0

0

cos( ) cos sin

sin( ) sin .

a

a

ζ ζ ν τ ζ ν τ
ν

ν ζ ν τ ζ
ν

= − + − +

= + −

ζ

 (21) 

Since an electron’s energy is proportional to its phase velocity ν, we must have 

0 0v ν− ≠  in order to have a net energy transfer, where "  indicates an average over 

all the electrons.  But the electrons are evenly distributed in ζ , so (21) implies 0

(1) 0ν = , and thus to determine the gain the second-order term is required [1] 

 ( )
2

(2) 0 1
0 0 0 0 0 0 0 043

0

cos(2 2 ) cos 2 cos( ) 1 sin cos( )a
ν ζ ν τ ζ ν τ ν τ ζ ζ

ν
= − + − + − − +  ν τ . (22) 

The first term inside the braces averages to zero over all the electrons, so we are left with 

 [
2

(2) 0 1
0 023

0

cos( ) 1 sin( )a
ν ν τ ν τ

ν
= − + ]0ν τ . (23) 

Recalling 4 Nν π γ∆ γ∆ = , we can write the average energy change of an electron as 

 
( )2 2

02

4 4
mc mcmc

N N
γ ν ν γ

γ
π π

∆ −
∆ = = (2)ν . (24) 

To obtain the total energy change of all the electrons in a volume element dV 

inside the laser beam, multiply (24) by the number of electrons in that volume, , 

where ρ is the electron beam density and F is the “filling factor”, defined as the cross-

section area of the electron beam divided by the cross-section area of the optical mode.  

From energy conservation, all of the energy lost by the electrons goes into the optical 

field.  The radiation energy in dV is 

FdVρ

22E dV π8 .  We define the gain of the optical field 

as the fractional increase in the optical field power or energy, giving 

 
( )2 (

2

( ) 4
2 8

FdV mc N
G

E dV
ρ γ π ν

π
= −

2)

. (25) 

Simplifying and using (23), we obtain 

 [ 0 0 03
0

2 2cos( ) sin( )jG ν τ ν τ ν τ
ν

= − − ]  (26) 
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where ( )2 38j N e KL F mcπ ρ γ=

( )0a π�

2

)

π

is the dimensionless current density.  This result is 

valid for weak fields  and low gain ( .  Equation (26) describes the gain 

curve shown in Figure 4, which was obtained by numerical simulation. 

j π

3. Coherence Development 

The electron phase velocity ν  is a function of the optical wavenumber k, so that a 

change in ν  implies a change in the frequency of the optical mode inside the resonator.  

Thus by varying ν and calculating the FEL response, we can obtain the gain or power 

spectrum. 

The spontaneous emission spectrum  is symmetric in shape, centered at 

 with a width . [1]  In weak fields and low gain, each mode will have gain 

 given by (26), antisymmetric about ν =  with a peak at ν = .  Each pass 

through the undulator, the optical power in each mode  will evolve according to 

( )s ν

0

0ν =

( )G ν

2ν∆ ≈

2.6

( )P ν

 [( ) ( ) ( ) ( ) 1P s P Gν ν ν ν∆ = + − ]Q  (27) 

where Q is the resonator quality factor; for Q , the loss on each pass is given by1� 1 .  

Over many passes, mode competition will cause the linewidth to narrow, as shown in 

Figure 5.  The bottom graph shows the spontaneous emission spectrum .  Above that 

is the theoretical gain spectrum  for a low-gain FEL (identical to Figure 4).  Above 

that is the optical power spectrum evolution   passes, showing that the 

initially broad spectrum narrows and shifts over to the peak of the gain curve, due to 

mode competition.  At the top is the final power spectrum .  Eventually, the optical 

linewidth is transform limited by the optical pulse length, which is determined by the 

electron pulse length. 

Q

( )s ν

( )G ν

( ),P nν 100n =

(fP ν )
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Figure 5.   Spontaneous emission spectrum , gain spectrum , 

optical power spectrum evolution , and final power 

spectrum  for a typical low-gain FEL, showing coherence 
evolving through mode competition as the laser line narrows over 

 passes. 

( )s ν ( )G ν

( ,P nν )
( )fP ν

100n =

4. FEL Wave Equation 

A more general formula for the optical wave evolution can be derived by starting 

with Maxwell’s wave equation in the Coulomb gauge, 

 
2

2
2 2

1 4A
c t c

π
⊥

 ∂
∇ − = − ∂ 

JG JJG
J  (28) 

where  is the optical wave vector potential and  is the transverse current density.  

For a helical undulator, the light emitted will be circularly polarized, and the wave vector 

corresponding to the field (11) can be written in rectangular coordinates as 

A
JG

J⊥

JJG

 (( , )( , ) sin ,cos ,0E z tA z t
k

ψ ψ=
JG

)  (29) 
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where .  We assume the field amplitude and phase vary slowly in 

time over an optical period 

( , )kz t z tψ ω φ= − +

(  and in space over an optical 

wavelength 

),dE dt E d dtω φ ωφ� �

( ,dE dz kE� )φ�d dz kφ .  Then the left-hand side of the wave equation 

can be written 

 

2
2

2 2

1 12 (cos , si

12 (sin ,cos ,0) .

E EA
c t z c t

E
z c t

ψ ψ

φ φ
ψ ψ

 ∂ ∂ ∂ ∇ − ≈ + −   ∂ ∂ ∂  
∂ ∂ − + ∂ ∂ 

JG
n ,0)

 (30) 

Define the unit vectors ε ψ  and , then project the 

wave equation onto each of these vectors to obtain 

1̂ (cos , sin ,0)ψ= − 2ˆ (sin ,cos ,0)ε ψ ψ=

 
( )

( )

1

2

1 2 ˆ

1 2 ˆ .

E E J
z c t c

E J
z c t c

π
ε

φ φ π
ε

⊥

⊥

∂ ∂
+ = − ⋅

∂ ∂
∂ ∂ + = ⋅ ∂ ∂ 

JJG

JJG  (31) 

Now write the total beam current as a sum of single-particle currents:  

  (32) ( ) ( )3
i

i
J x ec x rβ δ⊥ ⊥= − −∑
JJG G JJG G JG

where  is the position of an electron with transverse velocity  given by (13).  The 

projection of  onto ε  and ε  is 

ir
JG

β⊥

JJG

J⊥

JJG
1̂ 2ˆ

 
1 0

2 0

ˆ cos( )

ˆ sin( )

ecKJ k

ecKJ k

ρ
ε ψ

γ
ρ

ε ψ
γ

⊥

⊥

⋅ = +

⋅ = +

JJG

JJG

z

z
 (33) 

where we have assumed , and replaced the sum over all the electrons by an average 1N �

"  over sample electrons, weighted by the current density ρ.  Substituting (33) into 

(31) and using ζ φ , the wave equation can be written in complex form as 0k zψ ++ =

 1 2i eKEe e
z c t

iφ ζπ ρ
γ

−∂ ∂ + = − ∂ ∂ 
. (34) 
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If we assume a long electron pulse, we can remove the z-dependence from this equation, 

and it simplifies to 

 idaa j
d

e ζ

τ
−= = −

D
 (35) 

where ia a e φ=  is the dimensionless optical field and j is the dimensionless current 

density.  This is known as the FEL wave equation.  It has the same form for a linear 

undulator, if we replace K in the definitions of a and j by , as before. ( )0 1( ) ( )K J Jξ ξ−

The FEL wave equation (35) clearly demonstrates that the electron beam needs to 

be bunched so that 0ie ζ− ≠

a

 in order to achieve gain.  If the electrons are bunched near 

, the field amplitude |  will increase; if the electrons are bunched near ζ ≈ , the 

amplitude will decrease.  Bunching near 

ζ π≈ | 0

2π≈ ±

π

ζ  will drive the optical phase φ, with 

little change in the amplitude.  The wave equation also shows that the gain depends on 

the dimensionless current density j; for  there is low gain, and for there is 

high gain. 

j j�π

5. Diffraction 

For a low gain FEL, the fundamental optical mode inside the laser cavity is 

mainly determined by the cavity mirrors, and is typically Gaussian in shape.  The beam 

waist radius is on the order of a few mm, and is usually located in the middle of the 

undulator.  From there, the beam will spread out by diffraction, doubling in area over a 

distance  known as the Raleigh length, which is determined by the curvature of the 

mirrors.  If   is too large, the mode waist becomes large, so there is reduced overlap 

with the narrow electron beam (radius ~ 1 mm), and less gain.  If  is too small, the 

mode waist is small, but the beam rapidly expands near the ends of the undulator, again 

reducing overlap and gain.  The value of Rayleigh length that theoretically optimizes 

overlap and gain is 

0Z

0Z

0Z

0 12 0.3Z L= ≈ L , where L is the undulator length [15]. 

To study the evolution of transverse optical modes, we use the parabolic wave 

equation [16]: 
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 ( )
(

2

, , ,
, , ,

4
i

x y z

i a x y z je ζ

τ τ
τ

τ
−

⊥ −

∂ − ∇ + = − ∂  )

2
y

 (36) 

where , and the x and y coordinates are normalized to the characteristic 

mode radius, 

2 2
x⊥∇ = ∂ + ∂

Lλ π . The operator 2 4i ⊥− ∇  describes the beam diffraction.  The 

electron evolution is determined by the pendulum equation (18), which still has the same 

form, but the field amplitude a  now has x and y dependence. 

 The current density j on the right-hand side of (36) drives both the real and 

imaginary parts of the optical field a on the left-hand side.  Thus a narrow electron beam 

can distort the optical mode by changing the amplitude and/or the phase of the central 

portion of the wavefront.  In an FEL oscillator with modest gain, , the steady-state 

resonator mode shape can be altered by the FEL interaction.  In an FEL amplifier with 

very large gain, , a process known as “optical guiding” [17] can effectively 

contain the light in the vicinity of the electron beam, continuously opposing the natural 

diffraction. 

10j ≈

310j�

D. WEAK OPTICAL FIELDS 

1. FEL Integral Equation 

In weak optical fields, a π� , we use the expansion (20) for ζ and ν, and the 

wave equation (35) becomes 

 0 0( ) (1)ia ij e ζ ν τ ζ− +=
D

 (37) 

while the pendulum equation (18) becomes 

 0 0 0 0

2 (1)
( ) ( )

2

1
2

i id ae a e
d

ζ ν τ ζ ν τζ
τ

+ − +∗= +  . (38) 

Integrating the latter twice gives 

 ( ) ( )0 0 0 0( ) ( )(1)

0 0
( )

2
idd a e a e

τ τ ζ ν τ ζ ν ττ
ζ τ τ τ τ

′ ′′ ′′+ −∗′′
′  ′′ ′′ = + ∫ ∫ i + . (39) 
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Substituting that result into (37) and assuming the electron phases are evenly distributed, 

we obtain 

 ( )0

00 0
( ) ( )

2
iija d d e a

τ τ ν τ τ

ν
τ τ τ

′ ′′−′ ′′= ∫ ∫
D

τ ′′

d

. (40) 

If the electrons have a distribution f(q) of initial phase velocities ν ν about ν , the 

Fourier transform of this distribution is .  Using this “characteristic 

function” and the substitution τ τ  we can rewrite (40) in the form 

0i q= +

q

0

( ) ( )iqF e f qττ
+∞ −

−∞
= ∫

τ ′′′ = −

 0

0 0
( ) ( ) ( )

2
iija d d F e a

τ τ ν ττ τ τ τ τ
′′ ′−′′ ′ ′ ′= − −∫ ∫

D
τ . (41) 

Switching the order of integration and evaluating the inner integral, 

 0

0
( ) ( ) ( )

2
iija d F e a

τ ν ττ τ τ τ τ′−′ ′ ′ ′= − −∫
D

τ

)

0)

. (42) 

This is known as the FEL integral equation [18].  It is valid only for weak optical fields, 

but for both the high-gain and low-gain regimes. 

2. High Gain 

We’ve previously derived a formula for low gain  in weak fields (26).  In 

the high gain regime ( , the optical field amplitude and phase evolve rapidly.  For a 

perfect electron beam, , (42) can be integrated to describe high gain at resonance 

 as a function of time [1], 

( j π

)j π�

( )F τ =1

0(ν =

 ( )( 1 31( ) exp 3 2
9

G jτ ≈ )τ . (43) 

The growth of the field is exponential and is maximum at resonance for large j. 

3. Electron Beam Quality Effects 

The FEL integral equation (42) is useful for studying the effects of electron beam 

quality (energy spread and emittance).  Note that it contains no reference to individual 

electrons, so it can be used to determine the field evolution for a given distribution of 

initial electron phase velocities, without having to follow the motion of each electron via 

the pendulum equation.  Looking at the integrand, we see that the term a  ( )τ τ ′−
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contributes to the growth of the field .  This self-feedback leads to exponential 

growth of the optical field.  However, poor beam quality will cause the magnitude of the 

characteristic function  to decay rapidly, decreasing the growth rate.  The 

characteristic function corresponds to the bunching of the electron beam as it passes 

through the undulator.  As the magnitude of  decreases over time, so does the 

bunching of the electron beam that gives rise to growth of the optical field in an FEL.  

The characteristic function provides a visual means for observing how different types of 

electron distributions will affect bunching, gain, and optical phase evolution. 

( )a τ

( )F τ

( )F τ

( ) e
=

γ

In the early 1990’s, we studied the effects of various types of electron 

distributions on the FEL mechanism.  Current beam diagnostics in experiments do not tell 

us the precise shape of these functions, so it is important to study a variety of cases in 

order to understand the full range of possible effects.  The author was deeply involved in 

this research, analyzing the characteristic functions produced by various types of electron 

distributions, and their effect on FEL bunching and gain, and was the lead author of an 

article we published on this work. [12] 

As an example, a Gaussian energy spread of rms width  leads to a Gaussian 

phase velocity distribution 

γ∆

 
2 22

2

Gq

G

f q
σ

π σ

−

 (44) 

where 4G Nσ π γ= ∆  is the rms spread in phase velocities about ν  with q . 

This in turn yields a Gaussian characteristic function.   

0 0ν ν= −

Figure 6 shows that a narrow phase velocity spread, f(q) in the upper-left, yields a 

broad characteristic function,  in the upper-right, so bunching is preserved and the 

optical field grows rapidly.  In contrast, a broad phase velocity spread, f(q) in the lower-

left, produces a narrow characteristic function,  in the lower-right, so bunching is 

quickly destroyed and there is much less gain. 

( )F τ

( )F τ
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Figure 6.   Phase velocity distribution f(q) and characteristic function F(τ) for 

good beam quality (top) and poor beam quality (bottom).  With 
poor beam quality, F(τ) falls off faster, implying less bunching and 
reduced gain.  (From [12].) 

To study emittance effects, we use a distribution function  where 

 is the position of an electron when it enters the undulator and  is the 

injection angle.  Emittance effects would normally require a 3D simulation in order to 

include the changes in the FEL mechanism as the electrons drift off axis.  However, it is 

possible to convert the distribution function to the corresponding phase velocity 

distribution, and then obtain the characteristic function.  For example, an electron beam 

with a linear spread has a small angular spread in the x direction only.  The resulting 

phase velocity distribution is given by 

( ), , ,x yp x y θ θ

( ,x yθ θ( , )x y )

 ( )
qef q

q

θσ

θπ σ
=

−
 (45) 

for  and 0 otherwise, where 0q < ( )2 24 ( ) 1Nθ γ θ= ∆ +

θ∆

2Kσ π  is the spread in phase 

velocities induced by the angular spread of rms width .  The amplitude and phase of 

the characteristic function for this and several other distributions is shown in Figures 7 

and 8. 
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Figure 7.   Amplitude of the characteristic function F(στ) for various electron 

distributions, as described in the text.  (From [12].) 

 
 

 
Figure 8.   Phase of the characteristic function F(στ) for various electron 

distributions, as described in the text.  (From [12].) 
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The circular distribution arises when there is an equal distribution in angles in the 

x and y directions.  The triangular distributions occur when an emittance filter is used to 

reject all electrons outside a given radius, and outside a given angle; the negative slope 

occurs with betatron focusing, whereas the positive slope occurs if there is no focusing.  

Notice in Figures 7 and 8 that the various distribution functions produce remarkably 

different characteristic functions, and hence affect the FEL gain and phase evolution in 

different ways.  This indicates that experimentalists should pay attention not only to the 

width, but also the shape of the electron beam distributions. 

 

E. STRONG OPTICAL FIELDS 

1. Saturation 

The dimensionless optical field strength a  drives the electron bunching 

according to the FEL pendulum equation (18).  Electron bunching causes the optical field 

to grow via the FEL wave equation (35).  As the field grows, the peak-to-peak height of 

the separatrix 1/ 24 a increases, trapping a large fraction of the electrons in the closed orbit 

region of phase space, as shown in Figure 9.  This simulation uses a more realistic 

electron beam than before, with 1000 sample electrons injected with a Gaussian energy 

spread σ  about the initial phase velocity ν = .  The initial electrons are shown in 

yellow.  The initial optical field strength is . The pendulum and wave equations 

are still valid in strong fields, and the trapped electrons continue to follow the pendulum 

phase space paths.  Halfway through the undulator, the electrons shown in light brown 

are clearly bunched near the optimum phase for gain, ζ , so they give up energy to 

the optical wave, causing some electrons to lag behind others in the beam.  When they 

reach the end of the undulator, the electrons (now shown in red) are bunched at the 

optimum phase for absorption, ζ = .  This “over-bunching” leads to reduced gain and 

the onset of saturation. 

1G = 0 5

0 20=a

π=

0
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Figure 9.   Electron evolution in  phase space, optical field gain G  

and phase 
( ,ζ ν ) ( )τ

( )
)

φ τ  for a single pass through a high power FEL 

.  The electrons “over-bunch” and the gain is reduced, 
indicating the onset of saturation. 
( 0 20a =

At the onset of saturation, the mean phase velocity of the electron bunch is 

reduced on the order of the peak-to-peak height of the separatrix, 1/ 24 aν π∆ = ≈ 2 .  This 

is related to the energy extracted from the bunch by 4 Nν π∆ = 2γ γ π∆ ≈ , which gives a 

maximum theoretical efficiency 1 2Nγ≡ ∆ ≈

0.5%

η γ . So a typical FEL with  

periods has an extraction efficiency of η ≈ .  For a high-gain FEL , the onset 

of saturation occurs at a larger field strength, 

100N =

( j 1)�

( )2/32 2a j≈ , and the theoretical 

efficiency is ( )1/32 8j Nη = . [1] 

2. Tapering 

To enhance the extraction efficiency, it is possible to taper either the undulator 

period or field strength along the axis, thus maintaining resonance as the electrons lose 

energy to the optical field.  This gives an artificial acceleration to the electron phase,  

equivalent to adding a constant torque to the pendulum equation, which now becomes 
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 (
2

2 cosd a
d

ζ
δ ζ

τ
= + + )φ  (46) 

where the phase acceleration is 0 02 N λ≈ − ∆δ π  if the undulator period is decreased, or λ

( ) (2 24 1N K K K Kδ π ≈ − + ∆  )  if the undulator field strength is decreased [1]. 

If the taper rate is too large, aδ > , there will be no electrons trapped in closed 

orbits near resonance, and there will not be significant gain.  If the taper rate is too small, 
1/ 24 aδ , it will not overcome the natural deceleration of the electrons, and there is no 

advantage to tapering.  Also, tapering is only useful in strong optical fields, a π , 

when saturation begins to reduce the gain.  All of these criteria for tapering can be 

summarized in the following expression: 

 1/ 22 4 aπ δ .a<  (47) 

Tapering postpones saturation and enhances the natural efficiency of an FEL; 

however, it also reduces the weak-field gain, so the technique is more commonly used 

with FEL amplifiers rather than oscillators.  Negative tapering has also been investigated, 

and has been shown to be useful in some cases [19]. 

3. Trapped-Particle Instability 

In strong optical fields, many electrons are trapped in the closed-orbit region of 

phase space, as shown in Figure 9.  The trapped electrons begin to oscillate inside the 

separatrix.  A perturbation expansion of the pendulum equation near the stable fixed point 

( ) (, 2ζ ν π= ),0  gives an equation for these synchrotron oscillations [1], 

 ( ) (0
0 sin s

s

ν
ζ τ ζ ν τ

ν
≈ + )

)

 (48) 

where  is the initial position, and ( 0 0,ζ ν 1 2
s aν =  is the synchrotron frequency.  This 

modulation of the electron beam causes sidebands to appear around the fundamental at 

, corresponding to a wavelength shift 0 sν ±ν 2s Nν πλ λ∆ = , which is the ratio of the 

number of synchrotron oscillations to the number of undulator periods.  An optical field 

 29 



 

strength of 24a π=  is required for one complete oscillation.  High power FEL amplifiers 

can have many tens of synchrotron oscillations, causing significant sideband growth and 

fluctuations of the output power.  In an FEL oscillator, repeated low gain with about one 

synchrotron oscillation each pass is sufficient to generate sidebands. 

This “trapped-particle instability” can destroy FEL coherence, but also enhances 

the total output power, so it can be desirable in some applications where high power is 

more important than a narrow spectrum.  Sidebands can be suppressed by decreasing the 

current or increasing the cavity losses, or by tapering the undulator, which decreases the 

fraction of trapped electrons.  In the latter case, the synchrotron frequency is decreased to 

( )1 42 2
s aν δ≈ − . [1]  

F. SHORT PULSES 

RF linacs are capable of producing very short electron pulses, on the order of 

picoseconds, which can create very short optical pulses in an FEL.  The relativistic 

electrons travel slightly slower than the photons.  The resonance condition implies that 

during one pass through the undulator, the electron pulse will lag behind the optical pulse 

by a slippage distance .  If the electron pulse  length is on the order of or less than the 

slippage distance, then it will not overlap the optical pulse over the entire pass through 

the undulator, and gain will be reduced.  The electrons at the leading edge of the pulse 

see the full optical field strength and bunch accordingly.  As the bunched electrons slip 

back relative to the optical pulse, they amplify the trailing edge of the optical pulse.  Thus 

the optical pulse centroid travels slower than the speed of light, a process called “pulse 

lethargy” [1]. 

Nλ

1. Desynchronism 

If the electron pulses are timed so the next pulse arrives at the beginning of the 

undulator at the same time as the rebounding optical pulse (exact synchronism), the 

optical pulse will gradually fall behind the electron pulse, and optical power will decay.  

To compensate, the optical pulse must arrive slightly ahead of the electron pulse.  In 

practice, this is done by adjusting the cavity length S until the maximum output signal is 
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obtained (“tuning” the cavity).  The artificial advancement or “desynchronism” of the 

light pulse, relative to the slippage distance, is given by 2d S λ= − ∆ N . 

For large values of desynchronism, , the optical pulse advances 

significantly ahead of the electron pulse each pass, and only the trailing edge of the 

optical pulse is amplified.  This results in a broad, low-power optical pulse, with a narrow 

spectrum.  The power is generally too low to trigger the trapped-particle instability.  This 

regime could be desirable when stable, low-power operation is required.  If d is too large, 

, the electron and optical pulses won’t overlap much, so that gain will be below 

threshold, and there will be no output power. 

0.1d ≈

0.1d �

At moderate values of desynchronism, , the optical field strength 

becomes large enough to induce synchrotron oscillations, creating modulations of the 

optical pulse.  The desynchronism causes these modulations to continuously drift from 

the trailing to the leading edge of the pulse.  The optical power, spectrum, and pulse 

shape oscillate periodically over hundreds of passes; this is known as limit cycle behavior 

[20]. 

0.01d ≈

At smaller values of desynchronism, , the total output power can be 

larger, but the optical pulse can become chaotic due to the trapped-particle instability.  In 

this case the optical pulse is short and modulated by sharp spikes. [21] 

310d −≈
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III. SINGLE-MODE SIMULATIONS 

Prior to developing a large comprehensive simulation that covers all aspects of the 

FEL interaction, we have for many years used a set of smaller simulations that model 

various physical effects separately, enabling us to analyze the origins and consequences 

of those effects.  These simulations are well understood, easy to modify, and can run on 

personal computers.  They have been benchmarked against FEL theoretical formulas, and 

by comparison to numerous FEL experiments. 

This chapter describes our single-mode simulations, which model the interaction 

of a single optical mode (a single-frequency plane wave) with the relativistic electron 

beam as it travels through the undulator.  Although higher-order modes are present in any 

real experiment, we learn much about the basic FEL physics from these single-mode 

simulations. 

A. PHASE SPACE EVOLUTION 

Our simplest simulation, called psall, follows sample electrons as they evolve in 

phase space (  and exchange energy with the optical field over one pass through the 

undulator.  The optical field can start with a given amplitude and phase, or it can be 

allowed to develop from spontaneous emission.  The sample electrons are initially 

distributed uniformly in phase from ζ =  to 2 , but may have a random spread in phase 

velocities determined by beam emittance and energy spread.  The undulator can have a 

positive or negative taper.  In each numerical time step, the pendulum equation (18) 

determines the microscopic motion of the electrons in phase space, while the wave 

equation (35) is used to self-consistently update the optical field amplitude and phase.  

The output of psall, as shown in Figure 9, displays the evolution of the electrons in phase 

space, and plots the optical field gain and phase versus time.  This simulation is useful for 

understanding basic FEL physical processes, such as electron bunching, optical field 

growth and saturation, as discussed in the previous chapter. 

),ζ ν

0 π
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B. GAIN SURFACES 

We wrote another computer program called gain which runs the same single-

mode simulation numerous times, varying the initial electron phase velocity ν , to 

produce a gain spectrum like that shown in Figure 4.  In another program called Gav, the 

initial optical field strength  is also varied to produce a gain surface as shown in Figure 

10.  The single-pass gain is plotted versus initial electron phase velocity ν  and optical 

field strength , for a low-gain FEL ( .  The white lines on the surface represent 

contours of equal gain.  Notice that as the optical field strength is increased beyond 

saturation , the gain decreases.  The gain spectrum becomes broader since the 

height of the separatrix increases with 

0

0a

0

0a

(

)

)

1j =

0a π

0a .  The value of ν  that maximizes the gain 

also increases, which corresponds to a longer wavelength of laser operation; this effect 

has been observed in FEL experiments [22]. 

0

 

 
Figure 10.   Single-pass gain versus initial electron phase velocity ν  and 

optical field strength , for a low-gain FEL ( .  As  
increases, the gain spectrum becomes broader, the peak gain 
decreases and shifts to a larger value of ν .  

0

0a )1j = 0a

0
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For a high-gain FEL ( , the shape of the gain surface changes significantly.  

Figure 11 gives an example of a gain surface for an FEL with .  On the vertical 

axis we plot the logarithm of the gain, , because the gain can now change over 

several orders of magnitude.  Observe that in weak fields , the spectrum is now 

broader (compared to Figure 10) and more symmetric around resonance, ν = .  As the 

field strength increases, the peak again moves away from resonance.  Also notice the 

sharp dip in the surface near ν ≈  in weak fields; since the vertical axis is 

logarithmic, this corresponds to gain . 

)

)

1j�

0

100j =

)π

(ln 1 G+

10−

0

( 0a

0 0

≈

 

 

Figure 11.   Single-pass gain, , versus initial phase velocity ν  and 

optical field strength , for a high-gain FEL ( .  In weak 
fields, the gain spectrum is broad and nearly symmetric about the 
peak gain at ν ≈ .  As  increases, the peak gain decreases and 
moves away from resonance. 

(ln 1 G+

0a

0 0a

) 0

)100j =

0
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1. Gain Degradation Due to Electron Beam Quality 

Instead of varying the initial optical field, we can vary other parameters such as 

the electron beam energy spread or an angular spread due to beam emittance.  For 

example, Figure 12 shows gain surfaces for circular and linear spreads.  Recall from our 

earlier discussion that a linear spread is an angular spread in the x direction only, whereas 

a circular spread in an angular spread in both the x and y directions.  In Figures 12 (a) and 

(b) we see that as the angular spread σ  increases, the gain naturally falls off, but the 

spectrum details are different.  Note the different scales on the σ  axes.  It is clear that a 

linear angular spread is less susceptible to gain degradation than a circular spread. 

θ

θ

 

 

Figure 12(a). Single-pass gain, ln , versus initial phase velocity ν  
and angular spread σ , for a circular spread.  As σ  
increases, the gain falls off rapidly.  (From [23].) 

(1 G+

θ

) 0

θ
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Figure 12(b). Single-pass gain  versus initial phase velocity ν  
and angular spread σ , for a linear spread.  As σ  
increases, the gain falls off, but not as rapidly as it does for 
the circular spread.  (From [23].) 

(ln 1 G+

xθ

) 0

xθ

2. FEL Klystron 

Single-mode simulations are also useful for examining basic physical effects in 

new undulator designs.  For example, an FEL klystron consists of two identical 

undulators separated by dispersive magnets equivalent to a drift section of length  

undulator periods [24].  In the dispersion section between the undulators (at τ = ), 

each electron’s phase evolves by , where ν  is the electron’s phase velocity and 

dN

0.5

Dζ ν∆ =

dD N N=

( j =

 is the dimensionless dispersive length.  This enhances electron bunching and 

thus the gain in weak optical fields.  However in strong optical fields, it precipitates 

overbunching and thus reduces efficiency.   Figure 13 shows a gain surface for a typical 

FEL klystron.  Compared to the standard FEL shown in Figure 10 for the same current 

density , the peak gain in weak fields is now about three times greater, the gain in 

strong fields is significantly reduced, and there is more structure in the gain spectrum, 

with multiple peaks of nearly equal gain. 

)1
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Figure 13.   Single-pass gain, , versus initial phase velocity ν  and 

optical field strength , for an FEL klystron .  Compared 
to the standard FEL in Figure 10, there is now more gain in weak 
fields, but less gain in strong fields, and the spectrum has more 
structure. 

(ln 1 G+

0a
)

)
0

( 1D =

In the mid-1990’s we studied the SELENE FEL, a ground-based laser designed 

for satellite power beaming [25,26].  This experiment used a three-stage klystron 

oscillator with dispersive magnets at 1 3τ = , 2 3τ = , and τ = , followed by a single 

pass FEL amplifier referred to as the radiator.  Our simulations showed the klystron 

oscillator strongly bunches the electrons so they begin spontaneous radiation early in the 

radiator and are amplified along the entire length, with final amplified power from the 

radiator about 500 times the level in the oscillator.  The klystron configuration also limits 

the saturated power within the oscillator.  This scheme could produce a powerful output 

beam without damaging the oscillator mirrors. 

1

3. Positive and Negative Undulator Tapers 

Last year we published a paper in which we used single-mode simulations to 

compare positive and negative undulator tapers [27].  As discussed in the above section 

on strong optical fields, the conventional method for enhancing FEL efficiency is to 

decrease the magnetic field strength along the undulator to maintain resonance and 
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extract more energy from the electrons.  A decreasing magnetic field strength, 

0K K∆ < , adds a positive phase acceleration  

 
2

2

4 0
1

NK K
K K

π
δ

  ∆ = − >  +   
 (49) 

to the pendulum equation (46), so we refer to this as a positive taper.  Figure 14 shows a 

typical electron phase space after one pass through an undulator with a positive taper,  

, in strong optical fields, a .   This field strength would normally be beyond 

saturation, but the gain plotted on the right shows that the field is still growing. 

8δ = π 0 40=

 

 
Figure 14.   Electron phase space, optical field gain and phase evolution for an 

FEL with a positive undulator taper, , in strong optical 
fields, .  About half of the electrons are trapped inside the 
separatrix, and there is still positive gain, even though the field 
strength is beyond the normal saturation level. 

8δ = π
0 40a =
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Notice in Figure 14 that the separatrix is shrunk and distorted.  About half of the 

electrons are trapped in closed orbits inside the separatrix; the other half are in open 

orbits and do not interact much with the optical field.  The smaller separatrix confines the 

trapped electrons near the optimum phase for gain, ζ .  The fluctuations in the gain 

are due to synchrotron oscillations of the trapped electron bunch inside the separatrix. 

π=

Figure 15 shows the phase space evolution for an undulator with a negative taper 

of .  This corresponds to an increasing magnetic field strength along the 

undulator, 

8δ = − π

0K K∆ < .  The separatrix is now reversed from the previous case, and there 

are no trapped electrons inside it.  However, the phase space paths of the electrons cause 

them to bunch near ζ  about halfway down the undulator, as shown by the light 

brown dots, and they still produce gain. 

π=

 

 
Figure 15.   Electron phase space, optical field gain and phase evolution for an 

FEL with a negative undulator taper, δ , in strong optical 
fields, .  No electrons are trapped inside the separatrix, but 
they still bunch and produce gain. 

8= − π
0 40a =
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Figure 16 shows FEL gain surfaces for positive and negative tapers.  The two 

surfaces are related by G a .  In both cases, the weak-field gain 

is reduced but the strong-field gain is enhanced compared to the untapered case (Figure 

10).  The large tapers produce complicated gain spectra, with multiple peaks shifted away 

from resonance.   For the positive taper, Figure 16(a) shows that the peak gain drifts to 

larger phase velocity ν , corresponding to a wavelength shift 

( ) (0 0 0 0, , , ,Gν δ ν δ≈ − − −

0

)a

4%λ λ∆ ≈ , as the FEL 

evolves from weak fields to strong fields.  For the negative taper, Figure 16(b) shows that 

the peak gain remains at about the same ν  as  increases, so there is no wavelength 

shift. 

0 0a

 

 

Figure 16(a). Single-pass gain  versus initial phase velocity ν  
and optical field strength , for an FEL with a positive 
undulator taper, δ .  Compared to an untapered FEL 
(Figure 10), there is less gain in weak fields, but more gain 
in strong fields.  As  increases, the peak gain shifts to a 
larger value of ν . 

(ln 1 G+

8π=

0a

0

) 0

0a
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Figure 16(b). Single-pass gain  versus initial phase velocity ν  
and optical field strength , for an FEL with a negative 
undulator taper, δ .  Compared to an untapered FEL 
(Figure 10), there is less gain in weak fields, but more gain 
in strong fields.  As  increases, the peak gain stays near 
the same value of ν . 

(ln 1 G+

8π= −

0a

0

) 0
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IV. LONGITUDINAL MULTIMODE SIMULATIONS 

In an actual FEL experiment with a finite optical pulse length, there are multiple 

longitudinal modes inside the optical cavity.  We have developed several numerical 

simulations that follow the evolution of longitudinal modes in an FEL.  The optical field 

amplitude and phase are allowed to vary along the undulator (z) axis.  The initial optical 

field can be specified or allowed to develop from spontaneous emission.  The pendulum 

equation (18) and the wave equation (35) are used to self-consistently determine the 

evolution of the electrons and the optical field at each longitudinal position.  We follow 

the behavior of the optical pulse in a co-propagating window moving at the speed of 

light.  By taking a Fourier transform of the square of the optical pulse amplitude, we can 

obtain the optical power spectrum, and thus observe mode competition and coherence 

evolution. 

A. LONG PULSES 

Consider an electron pulse of length l  entering the undulator with a co-

propagating optical pulse.  In a single pass through the undulator, the slower moving 

electron pulse slips back relative to the optical pulse by the slippage distance, .  If the 

electron pulse is much longer than the slippage distance, 

e

Nλ

1z el Nλ= �σ , a long optical 

pulse will form.  In that case, we make the optical pulse window a small, integral number 

of slippage distances long, and we assume periodic boundary conditions at each end of 

the window.  Since the electron pulse is much longer than the optical pulse window, we 

take the current density  to be constant in that window. ( )j z

1. Single Pass 

For studying long pulse FEL amplifiers, we have a simulation called wrapev1 that 

follows the electron and optical pulses over a single pass through the undulator.  The 

output of wrapev1 shows the evolution of the optical pulse, the optical power spectrum, 

the electron energy distribution, the optical power and gain versus dimensionless time τ . 
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a. SLAC X-ray FEL 

In the X-ray FEL proposed at SLAC in 1993 [28], high-energy 7 GeV 

electrons would be used to produce radiation at a wavelength of 4 nm with a peak power 

of 28 GW.  Since there are no low-power input sources at that wavelength, and no 

mirrors are available to create an optical cavity, the FEL must create light from 

spontaneous emission and amplify it to high power over a single pass through the 

undulator, in a process known as self-amplification of spontaneous emission (SASE) 

[29].  Figure 17 shows the output from a simulation of this FEL.  The high peak current 

of 2500 A, the 60m long undulator with  periods, and other design parameters 

give dimensionless current density , so this is a high-gain FEL.  The electrons 

have a moderate energy spread σ = , and a small angular spread σ = .  The 0.16 ps 

duration electron pulse corresponds to  dimensionless pulse length σ ≈ . 

723N =

2400j =

3.6G 1θ

16z

In the middle left of Figure 17 we show the evolution of the optical field 

amplitude ( ),a z τ  over a single pass from τ =  to 1, as an intensity/contour plot inside 

a window two slippage distances long ( , which moves with the pulse at the 

speed of light.  The optical field amplitude is represented by the color scale at the top of 

the figure, with the largest amplitude, 

0

1 to= − ) 1z

362

(1 G τ+

j =

a =

( )ln

2400

, shown as red and zero field shown as 

blue.  Observe that the optical field grows from spontaneous emission to form a broad 

pulse with fluctuations due to shot noise, as shown in blue in the upper left.  In the lower 

left is the evolution of the optical gain, .  In the lower center the theoretical 

weak-field gain spectrum  for  is shown in black for reference.  In 

the center of the figure is an intensity/contour plot of the optical power spectrum , 

which shows coherence developing over a single pass.  The final optical spectrum, shown 

in magenta in the upper-center, has a linewidth corresponding to 

)
( )( )ln 1 G ν+

( ),P ν τ

0.07%λ λ∆ ≈ .  The 

triangular tick mark at the top points to the center of the initial power spectrum, and the 

rectangular tick mark points to the center of the final power spectrum.  In the lower right 

is the total optical power  versus time, showing saturation near the end of the 

undulator.  If higher power is required, the undulator could be tapered to delay the onset 

( )P τ
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of saturation, at the cost of a broader linewidth.  In the middle-right, another 

intensity/contour plot shows the evolution of the electron phase velocity distribution 

.  As we discussed before, a change in an electron’s phase velocity corresponds to 

a change in its energy, so the final broad phase velocity distribution, shown in red in the 

upper-right, indicates that significant energy has been extracted from the electrons. 

( ,f ν τ )

 

 
Figure 17.   Longitudinal multimode simulation results for the SLAC X-ray 

FEL.  The various plots are described in the text.  The optical 
power spectrum, , shows coherence evolving as the laser 
line narrows over a single pass through the undulator.  (From [30].) 

( ,P ν τ )

2. Multiple Passes 

For studying long pulse FEL oscillators, we have another simulation called 

wrapevn that follows the electron and optical pulses over many passes through the 
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undulator, again using periodic boundary conditions at each end of the optical pulse 

window.  Mirror transmission losses at the end of each pass are determined by the 

resonator quality factor Q.  The output of the program shows the evolution of the optical 

pulse, the optical and electron spectra, and the optical power and gain plotted versus pass 

number n. 

a. Boeing 1 kW FEL Oscillator 

In the early 1990’s, Boeing designed an FEL oscillator to produce 1 kW 

average power at a wavelength of 0.6 µm.  It was planned to be a high-gain FEL, 

, with  undulator periods, and a fairly large initial electron energy 

spread, .  The proposed resonator quality factor Q  corresponded to ~20% 

losses per pass.  Figure 18 shows the results of a wrapevn simulation of  this FEL.  This 

figure is similar to the previous examples, but now the evolution is over  passes, 

instead of over a single pass.  The bottom left corner shows the gain, G n , at the end of 

each pass through the undulator.  The FEL starts at resonance ν =  with an initial 

optical field of .  As the electrons slip back past the optical field sites and execute 

synchrotron oscillations, they continually modulate the optical wave envelope.  

Numerous modes begin to grow, and the power  increases dramatically as 

sidebands appear in the power spectrum .  The final power spectrum  shows 

several prominent sidebands up to δν  away from the fundamental, corresponding 

to about a 7% frequency spread.  The evolution of the optical field amplitude 

658j = 220N =

1

0 1a =

1Gσ = 5=

( )

400n =

( )

(P ν

0 0

P n

( ,P nν

200

)

)

)

(

≈

,na z  is 

chaotic, due to nonlinear interactions between the modes. 
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Figure 18.   Longitudinal multimode simulation results for the Boeing 1 kW 

FEL oscillator.  The optical field amplitude ( ),a z n  shows the 
development of a chaotic field over  passes. (From [31].) 400n =

B. SHORT PULSES 

If the electron pulse length σ  is just a few slippage distances long or less than 

the slippage distance, then we must allow the current density to vary along the undulator 

axis.  For numerical convenience, we choose a parabolic pulse shape given by  

z

( ) ( )2 2ˆ 1 2 zj z j z σ= −

z

 for .  The peak current density  and electron pulse 

length σ  are specified.  We follow the evolution of the optical pulse in a co-propagating 

window long enough to contain the entire pulse, so we do not use periodic boundary 

conditions for these simulations. 

( ) 0j z > ĵ
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1. Single Pass 

For studying short pulse FEL amplifiers, we have a simulation called pulsev1 that 

follows the electron and optical pulses over a single pass through the undulator.  The 

output of the program shows the evolution of the optical and electron pulses, the optical 

and electron spectra, as well as the optical power or gain versus dimensionless time τ . 

a. Boeing APLE Amplifier 

In the early 1990’s, we studied pulse slippage effects in the Boeing 

Average Power Laser Experiment (APLE), an FEL that was designed to produce 100 kW 

of average power by amplifying a series of short, intense pulses in a single pass through a 

tapered undulator [32].  This author was directly involved in planning this research, 

developing and running the simulations, and interpreting their output, and was the lead 

author of a paper we published on the results of this work [33].  The 450 A peak current 

of each micropulse corresponds to , where j is the peak dimensionless current 

density, and the filling factor  is the cross-section area of the electron beam 

divided by the cross-section area of the optical mode.  The electron beam has a Gaussian 

energy spread σ =  and an exponential angular spread σ = .  The electron pulse 

length is twice the slippage distance, σ = .  The initial optical pulse, produced by a 

separate FEL oscillator [34], has dimensionless amplitude  and a pulse length of 

 slippage distances.  The 20% tapering rate gives a phase acceleration of 

 

20000jF =

0.1=

2z

F

6G 7θ

0 18a =

6aσ =

200= .δ π

Figure 19 shows the output from a simulation of the Boeing APLE FEL.  

In the lower-left, the electron pulse  is shown in blue at the beginning of the 

undulator  and in red at the end of the undulator ( .  Over a single pass 

through the undulator, the slower-moving electron pulse slips back relative to the optical 

pulse by the slippage distance .  The window width is 4 slippage distances.  The 

optical pulse 

( )j z

( 0τ =

(

) )

)

1τ =

Nλ

,a z τ  starts out broad, but the final optical pulse in the upper left is about 

the same width as the electron pulse, since only the portion of the optical pulse that 

overlaps the electron pulse is amplified.  The corresponding optical power spectrum 
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( ,P ν τ )

)

 becomes broader over time. The evolution of the electron phase velocity 

distribution  shows the taper starting at τ ≈ .  Without the taper, the optical 

field would saturate at that point.  The strong taper allows the field to continue to grow, 

as shown by the total power evolution .  Tapering enhances the single-pass 

extraction efficiency to η ≈ , to achieve the 100 kW goal averaged over many pulses.  

The final electron phase velocity distribution in the upper right shows that about half of 

the electrons are trapped near resonance ν = . 

( ,f ν τ 0.3

)(P τ

0

5%

( )τP

 

 
Figure 19.   Longitudinal multimode simulation results for the Boeing APLE 

amplifier.  The electron phase velocity distribution  and the 

optical power evolution  show the effect of the linear 
undulator taper, δ , starting at τ ≈ .  (From [33].) 

( ,f ν τ

200= π 0.3

)
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2. Multiple Passes 

For studying short-pulse FEL oscillators, we have a simulation called pulsevn that 

follows the electron and optical pulses over many passes through the undulator.  The 

electron pulse length and the desynchronism determine the evolution of the optical pulse. 

Figure 20 shows the output from a pulsevn simulation of an FEL with a short 

electron pulse, σ = , at exact synchronism, .  The lethargy effect causes the 

optical pulse 

1z

( )

0d =

,a z n  to drift away from the electron pulse , and the optical 

power P(n) decays over  passes.  The electron phase velocity distribution 

 is narrow, so very little energy is extracted from the electron beam. 

(j z τ− )

)
1000n =

( ,f nν

 

 
Figure 20.   Longitudinal multimode simulation results for a short pulse FEL at 

exact synchronism  over n  passes.  The optical 

pulse 

( 0d = )
)

1000=

( ,a z n  drifts away from the electron pulse , and 

the optical power  decays. 

(j z τ− )
( )P n

 50 



 

Figure 21 shows a simulation with the same parameters, except now there is a 

small desynchronism ( , which means the cavity is slightly shortened to allow 

the optical pulse to “keep up” with the electron pulse.  The optical power evolution  

shows that the FEL now reaches steady-state saturation after about n  passes. In 

steady-state, the gain each pass equals the loss each pass 

)0.002d =

( )P n

800=

(1 2Q =

( ),P nν

)% .  When the optical 

field saturates, the bunched electrons begin to execute synchrotron oscillations as they 

slip back over the optical field sites.  This induces a slight modulation of the final optical 

pulse in the upper left, and the optical power spectrum  becomes broader. 

 
Figure 21.   Longitudinal multimode simulation results for a short pulse FEL 

with small desynchronism , showing steady-state 

saturation of the optical power . 
( 0.002d =

( )P n
)
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Figure 22 shows another simulation with large desynchronism ( .  Now 

the optical pulse advances ahead of the electron pulse each pass, becoming very broad, as 

shown by the final optical pulse in the upper left.  If the window was wide enough to 

contain the entire pulse, it would show that the pulse has a long exponential tail [1].  Less 

overlap between the electron and optical pulses yields less gain, and the steady-state 

power  is reduced.  The steady-state optical power is reduced at large 

desynchronism, and for large enough d, the power is zero.  This defines a range of 

desynchronism values where the FEL operates. 

)0.02d =

( )P n

 
Figure 22.   Longitudinal multimode simulation results for a short pulse FEL 

with large desynchronism, . The optical pulse ( 0.02d = ) ( ),a z n  

is now long, and the steady-state power  is reduced. ( )P n
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a. Limit Cycles: Stanford FIREFLY FEL 

In strong optical fields, the trapped-particle instability can lead to 

modulations in the optical pulse.  These can appear as sharp spikes that drift periodically 

across the pulse envelope at a rate depending on the desynchronism.  This “limit-cycle”  

behavior has been observed in FEL experiments [35,36].  Figure 23 shows the output 

from a simulation of the Stanford FIREFLY [37], an FEL that was designed in 1994 to 

produce 1 kW average power at a wavelength of 7.6 µm.  Limit cycles are clearly seen in 

the evolution of the optical field ( ),a z n

P ν

 and the total optical power .  Sidebands 

appear in the optical power spectrum , and their separation roughly corresponds 

to the synchrotron frequency, 

( )P n

( , n)
1 2asν = . 

 
Figure 23.   Longitudinal multimode simulation results for the Stanford 

FIREFLY experiment.  The trapped-particle instability causes 
limit-cycle behavior in the optical pulse ( ),a z n

( ,P ν

 and the formation 

of sidebands in the optical power spectrum .  (From [37].) )n
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b. Ultra-short Pulse FELs 

In the mid-1990’s we studied ultra-short pulse FEL oscillators, such as 

FELIX in the Netherlands [38], which uses picosecond electron pulses.  This author 

played a key role in planning this research, developing and running the simulations, and 

interpreting their results, and was the lead author of a paper we published on the results 

of this work [39].  Figure 24 shows the results of a simulation of an ultra-short pulse FEL 

with σ =  and very small desynchronism  over n  passes. 0.1z 0.0002d = 5000=

 

 
Figure 24.   Longitudinal multimode simulation results for an ultra-short pulse 

FEL , showing the formation of a narrow optical pulse ( 0.1zσ =

)
)

( ,a z n  and a broad optical power spectrum . (From [39].) ( ,P nν )
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In Figure 24, the final optical pulse ( ),a z n

20j =

)

 is about the same length as 

the electron pulse , and much shorter than the slippage distance.  Since the 

optical pulse is so short, the electron pulse does not “see” much of the light until it is 

more than halfway down the undulator, leaving less time for bunching and gain.  

However, the large dimensionless current density  enables bunching and gain to 

develop quickly.  The 1% loss each pass  allows the optical field to grow to a 

large amplitude over  passes. 

(j z τ−

5000n =

)

( 100Q =

c. Electron Beam Energy Modulation: Stanford SCA FEL 

In 1990, the Stanford Superconducting Accelerator (SCA) FEL was used 

to study the effects of electron beam energy modulation [40], which is equivalent to 

oscillation of the electron phase velocity through the relationship 4 Nν π γ γ∆

2000n =

∆ = .  

Figure 25 shows the output from a simulation of the Stanford SCA FEL over  

passes, with a sinusoidal variation added to the electron phase velocity on each pass, 

( ) (0 0 0sin 2n A nν ν π= +

0 2A π= N

( ),P nν

( ),P nν

( )

)N

)

.  The amplitude of the phase velocity modulation is 

, and the period is  passes.  The energy modulations can be seen in the 

evolution of the electron phase velocity distribution , and the optical power 

spectrum .  As strong optical fields develop, mode competition narrows the 

spectrum, making it more resistant to modulation.  This prevents the peak optical power 

from following the sinusoidal modulations fully to the right, so we observe flattening of 

the  oscillations for ν > .  The total optical power  also oscillates at the 

same frequency; the dips in the peaks correspond to narrowing of the peaks in the optical 

pulse evolution, 

0 500=

0

( ,f nν

( )P n

,a z n . 
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Figure 25.   Longitudinal multimode simulation of the Stanford SCA FEL with 

modulated electron beam energy.  Oscillations appear in the optical 
pulse ( ),a z n , the power spectrum , the phase velocity 

distribution , and the optical power .  (From [41].) 

( ,P nν )
)( ,f nν ( )P n

C. CURRENT NPS RESEARCH: TJNAF FEL 

For the past several years, we have been involved in design studies for the 

Thomas Jefferson National Accelerator Facility (TJNAF) FEL in Virginia [7].  Their 

accelerator provides 0.5 ps duration electron pulses at 34.5 MeV energy with a peak 

current of 50 A, at a pulse repetition rate of 18.7 MHz.  These values correspond to 

dimensionless current density  and electron pulse length σ = .  Their undulator 

has  periods of length cm each, with undulator parameter .  The 

FEL produces up to 2 kW of average power at a wavelength of λ =  µm inside a Q  

10j =

0 2.7λ =

1z

6

41N = 0.98K =

10=
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resonator.  It is currently being upgraded to 10 kW [8] by increasing the electron beam 

energy, the peak current, and the pulse repetition rate.  A 100 kW FEL [42] is also in the 

design stage.   

In the TJNAF FEL, after the electron beam exits the undulator, it is recirculated 

back to the accelerator for energy extraction.  Recirculation enhances system efficiency, 

and reduces radiation shielding requirements for the beam dump, but it requires a small  

induced electron energy spread (  for beam transport.  A high power FEL can 

induce a significant electron energy spread.  Various undulator designs have been 

considered to optimize steady-state optical power while minimizing the exhaust energy 

spread of the electron beam. 

)10%

1. Positive and Negative Undulator Tapers 

Last year we published a paper on positive and negative undulator tapers [27], 

which were explored experimentally using the TJNAF FEL [43].  We simulated linear 

taper rates of 5%K K∆ = ±

π 8π±

, , and , corresponding to phase accelerations of 

, , and  in the pendulum equation (46).  For each value of the undulator 

taper rate, we varied the desynchronism from d = 0 to 0.4 to determine the optimum 

weak-field gain and steady-state power.  For most of the range of d, a positive taper 

provides no advantage over the untapered case.   However, for a small negative taper 

, our simulations predict more steady-state power than the untapered case up to 

.  Negative taper also induces slightly less energy spread on the electron beam. 

7.5%± 10%±

4δ π= ±

4δ = −

0.18d �

6±

π

For some values of , we observe limit-cycle behavior.  Figure 26 shows 

the results of a pulsevn simulation of the TJNAF FEL over  passes, with a large 

positive taper δ , and desynchronism .  To include shot noise, the electron 

phases are given an initial random spread of amplitude δζ .  In the evolution of 

the optical power spectrum , at about  passes, the FEL suddenly shifts to 

a different frequency.  This corresponds to the onset of strong optical fields, where the 

peak in the gain curve shifts to a larger value of ν  (refer to Figure 16(a)).  After that, 

limit cycles appear as oscillations of  the optical field 

0.1d <

( ,P nν

2000n =

0.0001=

( )

8= π

)

0.026d =

200n =

,a z n , the optical spectrum 
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( ,P nν

( )P n

) ), and the electron phase velocity distribution .  The total optical power 

 is modulated by about 50%, at the same frequency. This limit-cycle behavior is 

also seen with negative tapers. 

( ,f nν

 

 
Figure 26.   Longitudinal multimode simulation results for the TJNAF FEL 

with large positive taper, δ .  Limit-cycle behavior is 
observed in the evolution of the optical pulse 

8= π
)( ,a z n  and the 

optical power spectrum .  The total optical power  is 
modulated by ~50%.  (From [27].) 

( ,P ν )n ( )P n
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2. Step-tapered Undulator  

Last year we studied the use of a step-tapered undulator for the proposed 100 kW 

TJNAF FEL.  This author played a key role in developing and running the simulations 

and interpreting the results, and was the lead author of a paper on this work, recently 

accepted for publication [44].  Unlike the linear tapered undulators discussed previously, 

the step-tapered undulator would have an abrupt change in the magnetic field halfway 

through the undulator.  In an experiment, this would be done by having two separate 

undulator segments, each with a different gap between the magnets.  The modification to 

the pendulum equation is similar to the linear taper (46): 

 (
2

2

1 cos
2

d a
d

ζ
θ τ ζ φ

τ
 = − ∆ + + 
 

)  (50) 

 where ( )θ   is the step function, and 
0 for 0
1 for 0
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≥
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NK K
K K

π  ∆∆ = − +   


  (51) 

is the phase acceleration at 1 2τ =  due to the step taper K K∆ . 

Figure 27 shows the results of a series of longitudinal multimode simulations of 

the proposed 100 kW FEL for a negative step taper , with the desynchronism 

varied from d = 0 to 0.3 .   

π∆ = −
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Figure 27.   Extraction efficiency  versus desynchronism d for the TJNAF 

100 kW FEL with negative step-tapered undulator, ∆ = .  To 
produce 100 kW, an efficiency of η >  is required, which is 
achieved for . 

η
π−

0.7%
0.03 d 0.07

In Figure 27, the extraction efficiency 4 Nγ ν π= ∆ = ∆η γ  is determined from 

the shift in the average electron phase velocity, ν∆ .  Note that η  is just the single-pass 

extraction efficiency; the overall system “wall plug” efficiency is enhanced by 

recirculation of the electron beam.  The steady-state output power is directly proportional 

to .  Figure 27 shows the general features of desynchronism (or “cavity detuning”) 

curves that are commonly observed in our simulations as well as in FEL experiments 

[43].  At exact synchronism, d , there is no output power, as discussed previously.  At 

small desynchronism, , there is a sharp rise in the output power, peaking at 

 in this case.  Limit-cycle behavior is often seen in this region, as shown in 

earlier figures.  As d is further increased, the power slowly drops off, until eventually 

there is no output power, for  in this case.  For stable operation, it may be 

η

≈

0=

0.01

d ≥

d ≈

0.05d

0.24
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desirable to operate the FEL at a value of d slightly beyond the peak of the 

desynchronism curve.  Otherwise, small fluctuations in the cavity length could cause 

large fluctuations in the output power, unless active feedback is employed to keep the 

cavity length constant. 

To achieve the goal of 100 kW average power, an efficiency of η ≥  is 

required for this FEL.  Figure 27 shows that with a step-tapered undulator , the 

100 kW goal is reached for desynchronism values 0.03 .  For no taper, the 

peak output power is slightly reduced, and the range of desynchronism values that 

produce the 100 kW goal is narrower, 0.03 .  The induced electron energy 

spread is similar in both cases, 

0.7%

π∆ = −

0.07d

0.06d

4%

,π∆ = ±

γ γ∆ ≈ , well below the requirement for recirculation.  

Other values of step-taper that we studied, , did not reach the 100 kW goal. 2π

Previously published results based on simulations and experimental results from 

CLIO and FELIX showed as much as a 75% efficiency enhancement with a negative 

step-tapered undulator [45-47].  In contrast, we found only a slight improvement in 

efficiency with a small negative taper for the parameters investigated.  The results of our 

research show that step-taper cannot always be as effective as found earlier, and that an 

FEL must be far into strong-field saturation before tapering can extend the saturation 

limit. 

3. FEL Klystron 

Last year we published a paper in which we investigated the use of an FEL 

klystron configuration for the TJNAF 10 kW FEL [48].  This FEL will use an 

electromagnetic undulator, so by changing the magnetic field strength, the undulator 

parameter can be varied from K = 1 to 4.  Thus according to the resonance condition (14), 

the FEL wavelength can be tuned from 2.3 µm to 20 µm.  Since the undulator consists of 

two separate sections, it is possible to have a dispersive section in between.  This would 

enhance the gain in weak fields, but reduce the saturation power and hence the efficiency.  

Our simulations showed that with no klystron (  and undulator parameter  or 

2, the TJNAF FEL could produce a maximum of 14.5 kW average power.  With  or 

4, the weak-field gain is below threshold, and there is no output power, due mainly to a 

)0D = 1K =

3K =
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smaller filling factor F at long wavelengths.  Introducing a weak klystron, ,  

reduces the average power to slightly above 10 kW for  or 2, but provides enough 

gain to enable operation with K = 3 at an output power of 7.5 kW.  With a stronger 

klystron, , all four undulator parameters produce some output power, but less 

than the desired value of 10 kW. 

0.25D =

1K =

0.5D ≥
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V. TRANSVERSE MULTIMODE SIMULATIONS 

The simulations described so far have all assumed plane waves, but in an actual 

FEL experiment, an optical wavefront with finite transverse dimensions will have 

multiple transverse modes.  To study these transverse modes, we have developed several 

three-dimensional simulations that include diffraction and self-consistent evolution of the 

optical wavefront in x, y, and τ .  These simulations do not assume axial symmetry; the 

electron beam is allowed to have separate emittance in the x and y directions.  Transverse 

distances are normalized to the characteristic optical mode radius 0 Lλ π=W .  The 

parabolic wave equation (36) is used to follow the evolution of the optical field. 

A. SINGLE PASS 

For simulating FEL amplifiers, we have a three-dimensional simulation called 

3d1 that follows multiple transverse optical modes over a single pass through the 

undulator.  The output of 3d1 shows the evolution of the optical wavefront and the 

driving current, the electron phase velocity distribution, the optical power and gain, and 

the optical phase versus dimensionless time τ  .

1. Optical Guiding 

As mentioned earlier, the FEL interaction can distort the optical mode.  If the 

current density is very large, , a phenomenon known as “optical guiding” can 

contain the light in the vicinity of the electron beam.  Enhanced overlap between the 

electron beam and the optical mode increases the FEL gain.  There are two processes that 

contribute to optical guiding.  A narrow, high-current electron beam can continuously 

amplify the central portion of the wavefront, effectively narrowing the optical mode area 

in a process known as “gain guiding”.  A high-current beam can also continuously drive 

the optical phase, opposing the phase shift due to natural diffraction and focusing the 

light back towards the electron beam in a process known as “phase guiding”.  In the 

following example, both types of optical guiding are observed. 

310j�
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a. Boeing APLE Amplifier 

Figure 28 shows the results from a simulation of the Boeing APLE 

amplifier, discussed earlier.  The box in the upper right shows the dimensionless 

parameters for this experiment.  The current density is , with an electron beam 

radius of σ = .  The electrons have a Gaussian energy spread of width σ =  and 

an exponential angular spread of width σ = .  The initial electron phase velocity 

 is determined from FEL gain surfaces for these parameters.  The initial optical 

field amplitude is a .  The position of the optical waist is at the beginning of the 

undulator, , in an FEL amplifier with no resonator mirrors.  The dimensionless 

Rayleigh length, , is determined by the optical mode radius, .  The 

undulator has  periods, with a 20% positive taper rate corresponding to a phase 

acceleration of δ .  The color scale shown in the parameter window is used for 

the intensity plots of the optical field amplitude and the electron beam current density, 

with dark blue corresponding to an amplitude or density of zero, and light blue 

corresponding to the maximum amplitude or density.  The white contour line on the 

intensity plots corresponds to half of the maximum value, as indicated on the color scale. 
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0.09e

0wτ =

N =

=

6G

0w

7θ

0 15ν =

0 18=

2
0 0z w= =

256

200

0.8

π

The intensity/contour plot in the upper-left of Figure 28 shows a slice 

through the optical wavefront, ( ),a x τ  at , as it evolves in time, and next to it is the 

final wavefront 

0y =

( ),a x y

( )

.  The narrow, high-current electron beam causes optical guiding, 

which yields a much smaller final spot size than would be predicted from natural 

diffraction.  The slow evolution of the optical phase in the center of the wavefront, 

 in the center-right, indicates that the predominant process in this case is gain 

guiding.  In the center-left is shown the evolution of the driving current 

(0,φ τ

( )

)

, cx j os ζ φ= +σ τ

( ),x y

 at , where j is the dimensionless current density at the site 

 and 

0y =

"  indicates an average over all the electron phases at that site. 
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Figure 28.   Three-dimensional simulation results for the Boeing APLE 

amplifier. The various plots are described in the text.  The 
evolution of the optical wavefront ( ),a x τ  shows optical guiding.  
(From [33].) 

The final electron beam profile σ  in the center of Figure 28 and the 

final wavefront 

( ,x y)

)( ,a x y  above it are used to estimate the filling factor, 2 2
0 0.1eF r W= ≈

( ),ζ ν

( )τ

, 

where  is the electron beam radius and W  is the mean optical mode radius.  In the 

lower-left is the evolution of the electron spectrum , showing the 20% taper 

starting at the saturation time τ ≈ .  The final phase-space plot  in the lower-

center shows that about 70% of the electrons remained trapped in closed orbits.  The 

graphs in the lower-right show that the optical power  and gain G  continue to 

grow linearly after τ , so the taper is effectively increasing the efficiency.  This 

er 0

( ,f ν τ

( )P τ

)

sat 0.2 f

sat
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simulation predicts an efficiency of η = , which is too optimistic since pulse slippage 

effects are neglected. 

8%

 

B. MULTIPLE PASSES 

For simulating transverse optical modes in FEL oscillators, we have another 

three-dimensional simulation called 3dn that runs for many passes, including the effects 

of mirror transmission and edge losses.  The shape and size of the cavity mirrors is 

determined by the Rayleigh length, the optical mode waist, and the mirror edge losses.  

The mirror transmission can be varied, as well as the output coupling mechanism.  The 

output of 3dn shows the evolution of the optical wavefront over many passes, the final 

optical mode shape, the electron phase velocity distribution, the optical power and gain 

versus pass number n. 

1. Optical Mode Distortion 

In a typical FEL oscillator, the steady-state optical mode has a transverse 

Gaussian profile, determined mainly by the resonator geometry (the size, shape and 

location of the mirrors, and the outcoupling mechanism).  However, a moderate electron 

beam current, j ≈ 100 to 1000, can distort the optical mode, affecting the average filling 

factor and hence the weak-field gain and steady-state power. 

a. SELENE FEL Klystron Oscillator 

The SELENE experiment, mentioned previously, is a two-stage FEL 

proposed in 1993 for satellite power-beaming applications [49], based on the Novosibirsk 

racetrack microtron [50].  The three-stage FEL klystron oscillator consists of three 

identical undulators separated by two dispersive magnets located at dimensionless times 

1 3τ =  and 2 3τ = .  The klystron design was intended to enhance electron bunching and 

reduce the saturated optical power inside the cavity.  The purpose of the oscillator is only 

to bunch the electrons before they are injected into an external radiator [25].  The radiator 

creates high average power over a single pass by self-amplification of spontaneous 

emission from the bunched electron beam. 
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Figure 29 shows the output from a 3dn simulation of the SELENE 

oscillator.  The dimensionless parameters for this experiment are shown in the upper-

right.  All longitudinal distances are normalized to the undulator length L, and transverse 

distances are normalized to the characteristic optical mode radius 0 Lλ π=

2500=

1

1.9=

W .  The 

microtron provides an electron beam with current density  and radius 

.  The electron beam can be given an offset from the undulator axis, but in this 

case there is no offset, so .  At each pass, the electrons are injected with an initial 

Gaussian spread in phase velocity of width σ = , centered on ν = .  The simulation is 

started with a weak optical field, , but the optical power quickly saturates after 

 passes.  The Rayleigh length  and the position of the optical waist 

 are chosen to maximize the overlap between the electron beam and the optical 

mode.  The klystron dispersive strength is given by .  The three undulator 

sections have a total of  periods.  The mirror radius is , and radius of 

curvature .  Cavity losses are given by Q  corresponding to approximately 

10% mirror transmission and edge losses around the mirrors of 10% per pass. 

j

mr

0.14eσ =

10n =

0.5wτ =

0 0x =

120N =

3G

0.4=

0

0 1a =

z0

0.66D =

1.2cr = 10=

In the upper left of Figure 29, we show a slice through the optical 

wavefront, ( ),a x n  at , as it evolves over n  passes, and next to it the final 

optical wavefront 

0y =

)

10=

( ,a x y .  Below that is a slice through the optical wavefront, ( ),a x τ  

at , as it evolves over the final pass, with the mirrors shown at each end, and tick 

marks beneath indicating the beginning of the undulator (  and the end of the 

undulator .   The mirror separation is artificially shortened to twice the undulator 

length for numerical convenience. 

0y =

)0τ =

( 1τ = )
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Figure 29.   Three-dimensional simulation results for the SELENE FEL 

oscillator, showing mode distortion in the evolution of the optical 
wavefront ( ),a x n .  (From [51].) 

Figure 29 shows optical mode distortion, and the effect of the klystron 

magnets is clearly seen in the final mode shape, ( ),a x τ .  In the lower-left is the 

evolution of the electron spectrum .  The final electron phase-space plot in the 

lower-center shows evidence of bunching.  The achromatic bending magnet used to 

extract the electrons from the oscillator [52] would add more dispersion and further 

improve the bunching.  In the lower right is the evolution of the optical power  and 

the gain G n , showing that the oscillator quickly saturates.  It may be necessary to 

operate the resonator at a low  to prevent the power from growing excessively and 

damaging the mirrors. 

( ,f ν τ

10

)

( )P n

( )
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b. TJNAF 10 kW FEL 

Figure 30 shows a three-dimensional simulation of the TJNAF 10 kW 

FEL oscillator over n  passes.  The dimensionless parameters for this experiment 

are shown in the upper-right.  Their accelerator provides an electron beam with a current 

density of  and a radius of σ = .  At each pass, the electrons are injected 

with an initial Gaussian spread in phase velocity of width σ = , centered on ν = .  

The Rayleigh length is  with the optical waist located in the center of the 

undulator, .  The undulator has  periods.  The dimensionless mirror 

radius is , and the dimensionless radius of curvature is .  Cavity losses are 

given by  corresponding to approximately 15% mirror transmission and edge losses 

around the mirrors of 0.1% per pass.  The simulation was started with a weak optical 

field, , and allowed to develop until steady-state power was obtained in a stable 

resonator mode. 
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165j =

0.5wτ =
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0.12e
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24=

mr
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=0a

In weak fields, , the narrow electron beam distorts the resonator 

mode, as seen in the upper-left plot 

a π

( ),a x n  in Figure 30.  Mode distortion reduces the 

filling factor, enhancing the gain in this example by about a factor of 4 compared to a 

simple theoretical estimate.  As the optical power grows and reaches saturation, the figure 

shows that gain and mode distortion are reduced.  Notice that at about n  passes, 

the optical mode narrows and the power grows rapidly again, finally developing a more 

symmetric Gaussian mode with steady power.  The plot of 

200=

( ),a x τ  in the center shows 

the steady-state optical mode. 
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Figure 30.   Three-dimensional simulation results for the TJNAF 10 kW FEL,  

showing optical mode distortion in weak fields, and the 
development of a Gaussian mode at saturation.  (From [48].) 

2. Current NPS Research: Short Rayleigh Length FELs 

In the previous two examples, a Rayleigh length of  was chosen to 

maximize the overlap between the electron beam and the optical mode.  In a high average 

power FEL, it may be desirable to operate at a shorter Rayleigh length.  This would result 

in a smaller mode waist, but a larger spot size at the mirrors, reducing the power density 

on the mirrors.  Traditional FEL theory implies that a shorter Rayleigh length would 

reduce the average filling factor, and hence the gain and steady-state power, but mode 

distortion can counteract this effect.  We have used our three-dimensional simulations to 

study short Rayleigh length operation for the proposed 10 kW and 100 kW upgrades for 

the TJNAF FEL at Jefferson Labs. 

0 0.4z =
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a. TJNAF 10 kW FEL 

Figure 31 shows the result of a series of 3dn simulations of the TJNAF   

10 kW FEL.  The weak-field gain and steady-state power are plotted versus the 

normalized Rayleigh length .  The design value of  is indicated by the 

triangular tick mark at the bottom of the graph.  The weak-field gain remains almost 

constant as the Rayleigh length is reduced from  to 0.1.  The gain is well above 

threshold 

0z 0 0.4z =

0 0.6z =

(1 15%Q ≈ )  for the entire range of  values that we studied, indicating that it 

may be possible to operate at an even shorter Rayleigh length.  As the Rayleigh length is 

reduced from the design value of  to 0.1, the steady-state power increases by 

50%.  Also as the Rayleigh length is reduced, the optimum electron phase velocity ν , 

indicated at each point, increases. 

0z

0 0.4z =

0

 
Figure 31.   Three-dimensional simulation results for the TJNAF 10 kW FEL, 

showing weak-field gain and steady-state power versus Rayleigh 
length.  As the Rayleigh length is reduced, the weak-field gain 
stays fairly constant, and the steady-state power increases.  (From 
[48].) 
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b. TJNAF 100 kW FEL 

The design for the proposed 100 kW FEL assumes a resonator quality 

factor Q  corresponding to approximately 21% mirror transmission, and edge losses 

around the mirrors of 1% per pass.  Even with such large losses, the intra-cavity power 

may be too much for the mirrors to tolerate.  Last year we reported the results of 

simulations using a short Rayleigh length resonator to reduce the power the density on 

the mirrors [53].  

4.2=

Figure 32 shows the shape of the optical mode and the power density on 

the mirrors for Rayleigh length  to 0.5.  The horizontal axis corresponds to the 

longitudinal axis of the resonator, normalized to the undulator length L.  The resonator 

length is 11L with the mirrors located at τ =  and +6, and the undulator is located 

between τ =  and 1.  The vertical axis is the optical mode radius in millimeters. 
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Figure 32.   Optical mode radius versus dimensionless longitudinal position τ  

for an optical cavity with mirrors located at τ =  and +6, for 
various Rayleigh lengths.  As the Rayleigh length is reduced, the 
mode radius at the mirror increases, and the intensity decreases. 
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Figure 32 shows that a Rayleigh length of  gives a spot size at the 

mirrors of 1 cm, corresponding to a power density of 160 

0 0.3z =

2cmkW .  Reducing the 

Rayleigh length from  to 0.1 increases the mirror spot size to approximately 1.7 

cm and decreases the power density on the mirrors by  a factor of 3. 

0 0.3z =

A short Rayleigh length FEL requires a short undulator, to avoid beam 

scraping at the ends of the undulator.  Also, since the mode waist is small in this case, a 

narrow electron beam is desirable.  Figure 33 shows the results of a three-dimensional 

simulation of the proposed 100 kW FEL, with a short Rayleigh length given by , 

and a narrow electron beam radius given by σ =  in the x and y directions.  In this 

case we have used a newer simulation called 3dbetan that includes the betatron motion of 

the electrons.  The betatron oscillation frequency is ω =  over the undulator length, 

with the electron beam focused in the middle of the undulator at τ = .  The beam’s 

angular spread σ =  is determined by the matching requirement 

0 0.1z =

2 2
, ,x yβσ=

, 0.1x y

16

)

1β

0.5β

7.2m =

, 0.01x yθ x yθσ ω

)

.  

The large initial electron phase velocity ν =  optimizes the extraction efficiency for 

the short Rayleigh length FEL.  The dimensionless mirror radius r  is chosen to 

allow 1% edge losses per pass ( , and the dimensionless radius of curvature 

 determines the Rayleigh length. 

0

0.01e =

1.5cr =

In the upper-left of Figure 33, a slice through the optical wavefront 

( ,a x n  is shown as it evolves over  passes.  After about 50 passes, the optical 

field begins to oscillate between two different modes with a period of about 10 passes.  

The optical power  and gain  in the lower right appear to oscillate at about the 

same frequency, as well as the electron phase velocity distribution  in the lower-

left.  The final wavefront 

200n =

( )G n( )P n

( ,f nν )

( ),a x y  in the upper-center is donut shaped; if we ran the 

simulation for a few more passes, we would observe a different mode shape.  The center 

plot, ( ),a x τ , presents a section through the optical wavefront during the final pass.  The 

superimposed red dots show the sample electrons as they pass through the undulator from 
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0τ =  to 1.  The white contour line shows where the field amplitude drops to 5% of its 

maximum value, as indicated on the color scale to the right.  The complicated pattern of 

the contour line confirms the presence of multiple transverse modes.  The optical wave 

amplitude profile, shown in yellow at the mirrors on each end, indicates that power is 

distributed across the mirrors. 

 

 
Figure 33.   Three-dimensional simulation results for the proposed 100 kW 

TJNAF FEL with a short Rayleigh length, , and a narrow 
electron beam, σ = , showing optical mode distortion and 
limit-cycle behavior. 

0 0.1z =

, 0.1x y

With a larger electron beam radius, multimodes are suppressed.  Figure 34 

shows the results of another 3dbetan simulation of the same FEL, with a longer Rayleigh 
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length given by  and a larger electron beam radius given by σ = .  The 

dimensionless current density has been reduced to  in order to keep the total 

current  constant.  The electron beam’s angular spread σ =  has been 

increased to satisfy the matching condition 

0 0.5z =

cr =

, 0.5x y

0.25

14.4j =

2 2
, x yβσ

m =

x yjσ σ ,x yθ

6

,x yθ =σ ω .  With the longer Rayleigh 

length, the optimum initial electron phase velocity is now ν = .  The dimensionless 

mirror radius that corresponds to 1% edge losses is now r , and the dimensionless 

radius of curvature is . 

0

3.4

1.7

 

 
Figure 34.   Three-dimensional simulation results for the proposed 100 kW 

TJNAF FEL with a long Rayleigh length, , and a broad 
electron beam, σ = , showing the development of a stable 
Gaussian mode. 

0 0.5z =

, 0.5x y
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In Figure 34, the optical field evolution plots ( ),a x n  and ( ),a x τ  show 

that a stable Gaussian mode develops over  passes.  Notice that the mirror spot 

size is much smaller than in Figure 33, and the power is concentrated near the center of 

the mirror, so mirror damage is more likely in this case.  The betatron motion of the 

electrons is now clearly seen in the red dots on the center-left plot.  Some of the sample 

electrons make excursions far outside the center of the optical mode, where they won’t be 

effectively bunched.  As a result, there is less gain, and the extraction efficiency is 

reduced to η ≈ . 

32n =

0.8%

Figure 35 shows a plot of the single-pass extraction efficiency η  versus 

the electron beam radius σ , for the TJNAF 100 kW FEL parameters with a short 

Rayleigh length .  It indicates that a narrow electron beam is beneficial for 

efficiency, since the electrons are contained well inside the optical mode. 

,x y
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Figure 35.   Three-dimensional simulation results for the proposed TJNAF 100 
kW FEL with a short Rayleigh length, .  The efficiency η  
is plotted versus the electron beam radius σ .  The extraction 
efficiency increases as the electron beam radius is reduced. 
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VI. FOUR-DIMENSIONAL SIMULATIONS 

The simulations described in the last two chapters follow the evolution of FEL 

optical modes in either the longitudinal or transverse directions.  They do not require too 

much computer processing power or memory, and they enable us to isolate and study 

important physical effects such as pulse slippage, coherence evolution, the trapped-

particle instability, diffraction, mode distortion, and wavefront guiding, as discussed in 

the previous chapters.  In many FELs, either longitudinal or transverse mode effects 

dominate, depending on parameters such as the current density, the electron beam radius, 

and the pulse length.  But in general, both longitudinal and transverse modes are present 

and interact with each other.  Longitudinal pulse slippage effects tend to decrease the 

gain, while transverse mode distortion effects tends to increase the gain.  It is sometimes 

necessary to study both types of effects simultaneously.  For that reason, we have 

developed four-dimensional simulations that model the electron pulse and the optical 

wavefront in the x, y, and z directions, as they evolve in time.  Unlike the three-

dimensional simulations described in the last chapter, we don’t have to select the 

resonance parameter ν  in advance; the four-dimensional simulation determines the 

correct value of  ν  self-consistently through mode competition. 

Four-dimensional simulations may be useful for studying optical modes in a 

megawatt class FEL with a short Rayleigh length.  However, they require large amounts 

of memory and computer time.  We are considering porting them to a supercomputer, or 

perhaps building a special-purpose computer to solve this problem.  We are also studying 

new techniques for reducing the computational and memory requirements. 

A. SHORT PULSES 

For modeling short-pulse FELs with narrow electron beams, we have developed a 

multi-pass, four-dimensional simulation called 4dpnf.  When the electron beam remains 

well inside the optical mode, , the filling factor 0er W� 2
0eF r W≈ 2  is small, and all 

electrons interact with the same small region of the optical field, so the microscopic 

bunching is uniform across the electron beam.  The distributions of electron phases ζ  
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and phase velocities ν  are therefore uniform across the beam.  The values of ζ  and ν  

for each electron are independent of the transverse positions x and y, but still depend on 

the longitudinal position z and the time τ .  Instead of requiring large four-dimensional 

arrays for the electron microscopic variables ζ  and ν , only two-dimensional arrays are 

needed.  This reduces the major memory requirements of the simulation.  Sample 

electrons are initially distributed uniformly in phase from 0 to 2 , but may have a 

random spread in phase velocities determined by beam emittance and energy spread. 

π

, ,y z

0

( ) ( 0, , )2

ζ τ
τ
−

os z=

( ) ( ( ,ζ τ ττ − −, , ,y z− ∇

2
y

= −

"

In 4dpnf, a complex-valued three-dimensional array, , is used to model 

the optical beam.  The initial optical field shape is parabolic in the longitudinal direction 

with a length comparable to the electron pulse plus the slippage distance.  In the 

transverse direction, the initial optical field amplitude has a Gaussian shape, while the 

optical phase is curved in the x-y plane so that natural diffraction focuses the beam at 

position  along the undulator, with dimensionless Rayleigh length  and mode 

waist . 

(a x )

)

wτ 2
0z w=

0w

A three-dimensional array is used in 4dpnf to represent the electron beam current 

density , which is assumed to have a parabolic profile in the x and y directions.  

Once the initial electron and optical beams are established, the electrons evolve in phase 

space according to the pendulum equation 

( , ,j x y z

 ( ) ( )
2 ,

0,0, , c , 0, ,
d z

a z z
d

τ
τ ζ τ τ φ τ− +  (52) 

while the optical field evolves according to the parabolic wave equation 

 ) )2 , , ,
4

i zi a x y z j x eτ
τ⊥
∂ + − ∂ 

 (53) 

where  with x and y again normalized to the characteristic optical mode 

radius 

2 2
x⊥∇ = ∂ + ∂

Lλ π , and  indicates an average over all electrons at each optical field site.  

The electron pendulum equation is evaluated using a fourth-order Runge-Kutta method, 

while the parabolic wave equation is integrated using fast Fourier transforms and 

diffraction operators [16]. 
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1. CEBAF IR FEL 

In the early 1990’s, we used 4dpnf to study a proposed 15 µm IR FEL at the 

Continuous Electron Beam Accelerator Facility (CEBAF, now known as the Thomas 

Jefferson National Accelerator Facility or TJNAF) [54].  This author was deeply involved 

in planning this research, developing and running the simulations, and interpreting their 

output, and was the lead author of a paper we published on the results of this work [55]. 

The electron beam for the CEBAF IR experiment had an energy of 45 MeV, with 

a peak current of 72 A, beam radius of 0.34 mm and pulse length of 0.54 mm.  The 

undulator had  periods of length λ = cm each, with magnetic field strength 

 kG, corresponding to undulator parameter .  These parameters give a 

peak dimensionless current density of , dimensionless beam radius of σ =  

and pulse length of σ = .  A dimensionless Rayleigh length of  was chosen to 

maximize the theoretical weak-field gain, with the mode waist at τ = .  The resonator 

was designed to have 2% mirror transmission, corresponding to quality factor Q , 

and 1% edge losses.  The resonator length was 13 times the undulator length, so a mirror 

wide enough to reflect 99% of the light must have a radius of about 150 times the 

electron beam radius.  That disparity in sizes requires a very large, fine grid in the 

transverse  direction.  To allow for a more reasonable grid size, the mirrors were 

artificially moved closer together, in this case to dimensionless separation τ =  equal to 

twice the undulator length.  This significantly reduced the laser spot size at the mirror.  

The mirror’s radius of curvature was increased to maintain the same Rayleigh length over 

the undulator.  If the mode shape is the same over the FEL interaction region, reducing 

the length of the free-space propagation region outside the undulator should not alter the 

simulation results. 
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In order to accurately model the transverse profile of the electron beam, it should 

exist on at least a few  grid points.  For this simulation, we increased the electron 

beam radius to σ =  in order to accommodate a reasonable grid size.  The peak 

current density was decreased to  to keep the same total current, which is 

x y−

0.2e

54j =
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proportional to .  Since the current density j is inversely proportional to the area of 

the electron beam, the product  is actually independent of beam size.  In fact, the 

FEL single-mode gain is proportional to , and is independent of the electron 

beam size.  If the transverse mode remains undistorted, then the value of σ  has no effect 

on the gain.  However, when the electron beam is small, transverse mode distortion tends 

to increase the actual gain above the single-mode gain.  The choice of σ =  is 

considered small enough to allow some mode distortion if it should occur. 

2
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A single mode, one-dimensional simulation in t, including the filling factor F, 

predicts about 50% single-pass gain for the CEBAF IR FEL.  A longitudinal multimode, 

two-dimensional simulation in  shows that the short pulse effects alone reduce the 

gain to about 25%.  With a transverse multimode, three-dimensional simulation in 

, the single-pass gain increases to more than 100% because of mode distortion.  A 

four-dimensional simulation in , which includes both mode distortion and 

short-pulse effects, gives a net single-pass gain of only 18%, roughly the same result 

given by the two-dimensional simulation.  The results of the 4dpnf simulation over 

 passes are shown in Figure 36.  The output is similar to those from our two-

dimensional simulations described in the chapter on longitudinal multimodes.  The new 

intensity/contour plot in the middle-right is the evolution of a cross-section through the 

optical wavefront 

)

)

)

( , ,x y t

60n =

( , , ,z

( ,a x n

0.3

 at , shown at the end of each pass through the 

undulator.  The final wavefront cross-section after n  passes, shown in the upper-

right, is nearly Gaussian.  In the middle of the wavefront is a dimple that is about the size 

of the electron beam, shown in the upper-right as superimposed yellow rectangle.  The 

dimple is caused by the interference of light emitted at τ ≈  with light emitted later at 

.  At τ ≈ , where electron bunching begins, the new light generated by the 

narrow electron beam of radius σ ≈  has a Rayleigh length , and 

rapidly diffracts outward.  The phase shift of the generated light over the last section of 

the undulator, ∆ ≈ , can be more than causing destructive interference.  As 

a result, a higher-order mode structure develops over many passes.  The final mode is a 

0= =

0.2

60=

0.6

0.9τ ≈

0z
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combination of the fundamental Gaussian mode and a higher-order mode, causing a 

dimple on the scale of the electron beam.  This dimple disappears when the electron beam 

size is increased beyond σ ≈ , because the phase shift is insufficient for destructive 

interference at the end of the undulator. 

0.3e

(

 

 
Figure 36.   Four-dimensional simulation results for the CEBAF IR FEL, 

showing steady-state gain G n  in weak optical fields, and the 

development of a dimple in the optical wavefront, 

( )
( ),a x n .  (From 

[55].) 

The theoretical single-mode gain spectrum for these parameters, , is shown 

in the lower middle of Figure 36 for reference.  Above the gain spectrum is the optical 

power spectrum evolution, , showing the initial power centered at resonance, 

( )G ν

,P nν )
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0ν =

( )G n

n

2ν ≈

.  After  passes, the laser frequency shifts to the value for maximum gain, 

corresponding to phase velocity ν ≈ .  The final power spectrum in the upper-center is 

narrow, but is Fourier-transform limited by the short optical pulse.  In the gain evolution 

 shown in the lower right, loss initially dominates gain, but as the laser frequency 

shifts to the value for maximum gain, the single-pass gain grows to about 18%.  

Considering the mirror loss and the effect of the dimple, this is in rough agreement with 

the weak-field gain of 25% found in short-pulse simulations without transverse effects. 

15n ≈

2.6

=

( ),a x n

Figure 37 shows the results of a 4dpnf simulation of the same FEL, allowed to run 

for  passes to reach steady-state saturation, where the gain each pass now equals 

the loss.  The desynchronism value d  has been optimized for maximum power in 

strong fields, but all other parameters are the same as in Figure 36.  The optical power 

spectrum evolution  in the center of Figure 37 shows a shift to phase velocity 

 for optimum gain in strong fields, as we saw earlier in the FEL gain surfaces.  

The final optical mode shape 

400=

π

0.005

( ,P nν

 has no dimple, because the strong fields reduce the 

phase shift that is needed for interference. 

)

 

 84 



 

 
Figure 37.   Four-dimensional simulation results for the CEBAF IR FEL, 

showing steady-state optical power  and the development of 

a smooth Gaussian wavefront 

( )P n

)( ,a x n .  (From [55].) 

B. LONG PULSES 

For modeling long-pulse FELs, we have developed a multi-pass, four-dimensional 

simulation called 4dwrn, which includes the betatron motion of the electrons and does not 

assume a narrow electron beam.  A complex-valued three-dimensional array, a x , 

is used to model the optical beam inside a window of width a few slippage distances or 

less. A three-dimensional array represents the electron beam current density , 

which is assumed to have a parabolic profile in the x and y directions.  One-dimensional 

arrays are used to store the microscopic phase and phase velocity of each sample 

electron, and two-dimensional arrays represent their x and y positions as they execute 

( ), ,y z

( ), ,j x y z
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betatron oscillations.  As before, the pendulum equation (52) is used to follow the 

microscopic motion of the electrons in phase space, and the parabolic wave equation (53) 

describes the evolution of the light. 

1. Boeing 1 kW FEL Oscillator 

In 1996, we used 4dwrn to study the Boeing 1 kW FEL oscillator, discussed 

earlier in the chapter on longitudinal modes.  This author played a key role in planning 

this research, developing and running the simulations, and interpreting their output, and 

was the lead author of a paper we published on the results of this work [56].  Figure 38 

shows the output from a 4dwrn simulation of the Boeing FEL oscillator over  

passes.  The dimensionless current density is , with an electron beam radius 

.  The electrons have a Gaussian energy spread given by σ =  and an angular 

spread σ = .  The electrons have a betatron frequency ω = , or slightly more than 

one betatron oscillation along the  period undulator.  The dimensionless 

Rayleigh length is , with ≈20% mirror outcoupling (  and 1% edge losses 

. 

50n =

1800j =

0.5eσ =

0.01e =

11G

8.4

)5

1.4θ

( )

β

Q =

220N =

0 0.5z =

The power evolution  in the lower right of Figure 38 shows that large 

optical fields develop rapidly inside the high-gain FEL ( , creating deep potential 

wells in phase space.  The bunched electrons undergo synchrotron oscillations, and the 

trapped-particle instability leads to sideband formation.  The sidebands are amplified 

each pass, modulating the field envelope 

( )P n

)

)

1j�

( ,a z n  shown on the left, and producing a 

broad, chaotic optical power spectrum, shown in the center plot, .  The final 

spectral width is 

( ,P nν )

2 Nπ 3.5%λ λ ν∆ ≈ ∆ ≈

48 10

.  The simulation predicts a steady-state output 

power of  in our dimensionless units, which corresponds to about 250 W, after 

accounting for the overall system duty factor. 

P ≈ ×
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Figure 38.   Four-dimensional simulation results for the Boeing 1 kW FEL 
oscillator, showing the development of a broad, chaotic optical 
power spectrum .  (From [56].) ( ,P nν )

One way to prevent the trapped-particle instability is to taper the undulator.  This 

should cause about half of the electrons to become untrapped, which would reduce the 

synchrotron oscillations.  Figure 39 shows another 4dwrn simulation of the Boeing FEL 

oscillator, with a 10% undulator taper, corresponding to phase acceleration δ π .  

The theoretical weak-field gain spectrum G  in the lower center has numerous spikes 

because of the large undulator taper. 

88=

( )ν
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Figure 39.   Four-dimensional simulation results for the Boeing 1 kW FEL 
oscillator with a tapered undulator, δ , showing the 
suppression of sidebands and the development of a narrow optical 
power spectrum .  (From [56].) 

88= π

)( ,P nν

In Figure 39, we see that the sideband growth is reduced significantly, and the 

spectral width is now only 1%λ λ ≈

( )P n

∆ .  The average output power is increased to 430 W, 

but the power evolution  shows significant oscillations.  This may be due to 

sporadic attempts at sideband formation and interference of sideband frequencies.   

Increasing the outcoupling or the system duty factor would be necessary to achieve 1 kW 

average power. 
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C. CURRENT NPS RESEARCH: MEGAWATT FEL 

At the Naval Postgraduate School, we are working on the design of a compact, 

high average power FEL for ship defense in collaboration with Jefferson Labs and 

Advanced Energy Systems [57].  The laser must produce at least 1 MW of average power 

at a wavelength near 1 µm for propagation through the marine atmosphere and 

destruction of incoming missiles.  With 25% outcoupling, the intra-cavity power would 

be 4 MW.  The entire system is intended to fit inside a box this is approximately 

, so the resonator can only be 12 m long.  For a typical Rayleigh length of 

 m, the laser spot size on the mirrors would be only a few mm diameter.  This spot 

size would give a power density on the mirrors of about 30 MW/cm

12m 4m 4m× ×

0 5Z =

0Z =

2, which would 

destroy the mirrors.  We have proposed an optical resonator with a very short Rayleigh 

length of  cm to increase the mirror spot size and reduce the intensity to          

210 kW/cm

1.8
2.  Cooled sapphire mirrors may be able to withstand this intensity without 

damage. 

The design calls for a short  period, cm length undulator, to 

enhance the extraction efficiency and avoid beam scraping at the ends of the undulator.  

For these parameters, the dimensionless Rayleigh length is 

20N = 60L =

0 0 0.03z Z L= = , compared 

to a typical FEL with a Rayleigh length of .  The rms undulator parameter for this 

design is . 

0z = 0.3

2K =

The optical mode radius at its waist in the middle of the proposed resonator is  

only  mm. With such a short Rayleigh length, the beam will expand rapidly, to 

a spot size of 2.5 cm at the mirrors, approximately 300 times greater than at the waist.  

This size disparity implies that a grid of at least 4096  elements in the transverse 

 plane is required to represent the optical beam throughout the resonator.  The grid 

dimensions are determined by the requirement that it must cover the entire optical 

wavefront at the mirrors, yet still represent the much smaller wavefront at the waist with 

 grid elements.  Note that the FFTs used in our propagation algorithm require that 

the grid dimensions be integral powers of 2. 

0 0.08w =

)
4096×

( ,x y

16
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The superconducting accelerator will provide an electron beam with an energy of 

140 MeV and an average current of 0.6 A.  The dimensionless current density is , 

so this is a high-gain FEL.  The electron beam will be recirculated to enhance overall 

system efficiency and reduce shielding requirements for the beam dump.  An electron 

beam radius of  mm would optimize the overlap with the optical mode in the 

center of the undulator.   This corresponds to a normalized electron beam radius of 

, so there could be significant optical mode distortion. 

200j =

0.08er =

, 0.2x yσ =

The electron pulse length is l mm, or a normalized length of σ =  

slippage distances, so pulse slippage effects should be minor.  However, longitudinal 

modes should be included to study coherence evolution, and to allow the simulation to 

self-consistently determine the laser operating frequency.  To accurately model the 

longitudinal pulse for a reasonable number of time steps through the undulator, at least 

1024 sites are required in the z direction.  With the requirement for  elements 

in the  plane at each of the longitudinal sites, assuming 8 bytes for each double-

precision floating-point number, a 256 GB array is needed to represent the amplitude and 

phase of the optical field at every point inside the optical cavity.  This is much greater 

than the capacity of currently available personal computers and desktop workstations. 

0.3e = 15z

4096 4096×

( ,x y)

)

To avoid this memory limitation, we could artificially move the mirrors in closer, 

as we have done in some of three-dimensional simulations described earlier.  Another 

possibility is to use a re-gridding technique.  At the end of the undulator, the mode radius 

is only  mm, about 16 times the waist radius.  So inside the undulator we could 

use a grid of only   elements in the (  plane, requiring only 1 GB.  Outside 

the undulator, when the optical beam expands rapidly and no longer interacts with the 

narrow electron beam, we could map the optical wavefront onto a coarser grid, the same 

size  but with each element representing a larger area.  We would use this 

coarse grid to propagate the wavefront out to the mirror and back, and then map it back 

onto the fine grid when it re-enters the undulator.  One issue we are studying is how to 

map the wavefront from one grid to another without introducing numerical artifacts.  We 

1.3Lw =

(256 256×

256 256×

)

,x y
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believe re-gridding won’t affect the fundamental mode, but might cause distortion of 

higher-order modes. 
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VII. CONCLUSION 

The results presented in this dissertation cover 10 years of FEL research at the 

Naval Postgraduate School.  This work has added to the understanding of important 

effects in FELs, such as the trapped-particle instability, pulse lethargy, coherence 

evolution, limit-cycle behavior, gain degradation due to electron beam quality, optical 

mode distortion, and optical guiding.  It has helped to explain new physical effects such 

as electron beam energy modulation.  It has guided the development of new FEL 

concepts such as multi-stage optical klystrons, inverse-tapered and step-tapered 

undulators, and short Rayleigh length resonators.  It has played an important role in the 

design of many existing and proposed FEL experiments, including the Boeing 1 kW 

oscillator and APLE amplifier, the Stanford FIREFLY and SCA FELs, the SELENE FEL 

klystron, the SLAC X-ray FEL, the CEBAF IR FEL, and the TJNAF FELs. 

Our most recent work has concentrated on the development of high average-

power FELs for naval applications.  We have worked closely with colleagues at TJNAF 

as they upgrade their present FEL from 2 kW to 10 kW, and eventually to 100 kW 

average power.  We have visited their laboratory numerous times, attended workshops 

and upgrade review panels, and produced several joint publications and conference 

presentations.  An important research goal has been to enhance their FEL extraction 

efficiency while minimizing the induced energy spread of the electrons, to enable beam 

recirculation.  To reach this goal, they are considering new undulator designs such as 

inverse-tapered and step-tapered undulators.  The research results presented in Chapter 

IV of this dissertation have been useful in evaluating these new undulator designs.  Our 

simulations showed that a small negative linear or step-taper produces the best efficiency, 

but only a slight improvement over no taper, in contrast to previously published results. 

A high average-power FEL may require a short Rayleigh length resonator to 

avoid mirror damage.  Classical FEL theory says that the Rayleigh length should be about 

one third of the undulator length to optimize the overlap between the electron beam and 

the optical mode.  However, the research results presented in Chapter V of this 

dissertation show that it may be possible to operate an FEL at a much shorter Rayleigh 
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length, one tenth of the undulator length or less, without a significant reduction in gain.  

In fact, our simulation results shown in Figure 31 predict that the steady-state power 

actually increases as the Rayleigh length is reduced.  We believe this effect is due to 

optical mode distortion, as seen for example in Figure 33. 

At the Naval Postgraduate School, we are currently designing a compact, 

megawatt average-power FEL for ship defense, in collaboration with TJNAF and 

Advanced Energy Systems.  To satisfy the size requirements without damaging the 

mirrors, the optical cavity may need to have a very short Rayleigh length.  In that case, 

our present 3D and 4D simulations will need to use very large transverse grids, 

overwhelming the memory capacity of desktop computers.  To avoid this memory 

limitation, we are developing a re-gridding technique, discussed in Chapter VI.  

The original research by the author presented in this dissertation has played an 

important role in the development of FELs over the past 10 years.  Using numerical 

simulations, this work has helped to bridge the gap between FEL theory and experiments, 

to understand important physical effects in FELs, and to aid in the design of new FELs. 
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